Articoli di riviste sul tema "Quantum wells"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Quantum wells.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Quantum wells".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Krause, Jeffrey L., David H. Reitze, Gary D. Sanders, Alex V. Kuznetsov e Christopher J. Stanton. "Quantum control in quantum wells". Physical Review B 57, n. 15 (15 aprile 1998): 9024–34. http://dx.doi.org/10.1103/physrevb.57.9024.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Narimanov, E. E., e A. Douglas Stone. "Quantum chaos in quantum wells". Physica D: Nonlinear Phenomena 131, n. 1-4 (luglio 1999): 221–46. http://dx.doi.org/10.1016/s0167-2789(98)00229-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Cohen, R. M., M. Kitamura e Z. M. Fang. "Surface quantum wells". Applied Physics Letters 50, n. 23 (8 giugno 1987): 1675–77. http://dx.doi.org/10.1063/1.97764.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Himpsel, F. J. "Magnetic quantum wells". Journal of Physics: Condensed Matter 11, n. 48 (17 novembre 1999): 9483–94. http://dx.doi.org/10.1088/0953-8984/11/48/309.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Tralle, Igor, e Klaudiusz Majchrowski. "“Smart Design” of Quantum Wells and Double-Quantum Wells Structures". World Journal of Condensed Matter Physics 04, n. 01 (2014): 24–32. http://dx.doi.org/10.4236/wjcmp.2014.41004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Stemmer, Susanne, e Andrew J. Millis. "Quantum confinement in oxide quantum wells". MRS Bulletin 38, n. 12 (dicembre 2013): 1032–39. http://dx.doi.org/10.1557/mrs.2013.265.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Koch, M., R. Hellmann, S. T. Cundiff, J. Feldmann, E. O. Göbel, D. R. Yakovlev, A. Waag e G. Landwehr. "Excitonic quantum beats in Quantum wells". Solid State Communications 88, n. 7 (novembre 1993): 515–19. http://dx.doi.org/10.1016/0038-1098(93)90040-t.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Wenqin, Cheng, Huang Yi, Zhou Junming, Feng Wei, Wang Hezhou, She Weilong, Huang Xuguang, Lin Weizhu, Yu Zhenxin e Xu Geng. "Transient photoluminescence spectra of GaAs/AlGaAs quantum wells, quantum well wires, and quantum well boxes". Chinese Physics Letters 7, n. 6 (giugno 1990): 284–87. http://dx.doi.org/10.1088/0256-307x/7/6/012.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Katayama, Shin-ichi, e Takuma Tsuchiya. "Light emission of quantum-well-exciton polaritons in single quantum wells". Physica B: Condensed Matter 227, n. 1-4 (settembre 1996): 393–96. http://dx.doi.org/10.1016/0921-4526(96)00451-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Wang, H., J. Shah, T. C. Damen, L. N. Pfeiffer e J. E. Cunningham. "Femtosecond dynamics of excitons in quantum wells and quantum well microcavities". physica status solidi (b) 188, n. 1 (1 marzo 1995): 381–86. http://dx.doi.org/10.1002/pssb.2221880135.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Vainberg, V. V. "Electron mobility in the GaAs/InGaAs/GaAs quantum wells". Semiconductor Physics Quantum Electronics and Optoelectronics 16, n. 2 (25 giugno 2013): 152–61. http://dx.doi.org/10.15407/spqeo16.02.152.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Bhattacharya, P., R. Burnham, D. Chemla, G. Dohler, H. M. Gibbs, A. Majerfeld, P. W. Smith, G. Stillman, H. Temkin e R. L. Gunshor. "III Multiple-quantum wells". Applied Optics 26, n. 2 (15 gennaio 1987): 216. http://dx.doi.org/10.1364/ao.26.000216.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Tsu, Raphael. "Silicon-based quantum wells". Nature 364, n. 6432 (luglio 1993): 19. http://dx.doi.org/10.1038/364019a0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Peeters, F. M., C. Riva e K. Varga. "Trions in quantum wells". Physica B: Condensed Matter 300, n. 1-4 (luglio 2001): 139–55. http://dx.doi.org/10.1016/s0921-4526(01)00577-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Chinyama, K. "Ultrathin CdSe quantum wells". Journal of Crystal Growth 184-185, n. 1-2 (febbraio 1998): 298–301. http://dx.doi.org/10.1016/s0022-0248(97)00674-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Chinyama, K. G., I. V. Bradley, K. P. O'Donnell, P. I. Kuznetsov, A. P. Chernushich e V. Luzanov. "Ultrathin CdSe quantum wells". Journal of Crystal Growth 184-185 (febbraio 1998): 298–301. http://dx.doi.org/10.1016/s0022-0248(98)80063-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Gevaux, David. "Quantum wells meet nanowires". Nature Photonics 2, n. 10 (ottobre 2008): 594. http://dx.doi.org/10.1038/nphoton.2008.190.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Peeters, F. M., C. Riva e K. Varga. "Trions in Quantum Wells". Few-Body Systems 31, n. 2-4 (1 maggio 2002): 97–100. http://dx.doi.org/10.1007/s006010200005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Chemla, Daniel S. "Quantum Wells for Photonics". Physics Today 38, n. 5 (maggio 1985): 56–64. http://dx.doi.org/10.1063/1.880974.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Ivanov, A. L., e H. Haug. "Bipolariton in quantum wells". Il Nuovo Cimento D 17, n. 11-12 (novembre 1995): 1255–64. http://dx.doi.org/10.1007/bf02457197.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Hirose, M., e S. Miyazaki. "Quantum wells and superlattices". Journal of Non-Crystalline Solids 97-98 (dicembre 1987): 23–30. http://dx.doi.org/10.1016/0022-3093(87)90009-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Oliver, R. A., M. J. Kappers e C. J. Humphreys. "Gross well-width fluctuations in InGaN quantum wells". physica status solidi (c) 5, n. 6 (maggio 2008): 1475–81. http://dx.doi.org/10.1002/pssc.200778557.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Holthaus, Martin. "Strongly Driven Semiconductor Quantum Wells". Progress of Theoretical Physics Supplement 116 (1 febbraio 1994): 417–23. http://dx.doi.org/10.1143/ptps.116.417.

Testo completo
Abstract (sommario):
The influence of resonances in a classical Hamiltonian system on its quantum mechanical counterpart is particularly transparent in periodically driven systems with one degree of freedom. Wide semiconductor quantum wells, subjected to strong far-infrared laser radiation, may be suitable objects to study the classical-quantum correspondence experimentally.
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Kornyshov G.O, Gordeev N.Yu., Shernyakov Yu.M., Beckman A.A., Payusov A.S., Mintairov S.A., Kalyuzhnyy N.A. e Maximov M.V. "Relationship between wavelength and gain in lasers based on quantum wells, dots, and well-dots". Semiconductors 56, n. 12 (2022): 915. http://dx.doi.org/10.21883/sc.2022.12.55151.4408.

Testo completo
Abstract (sommario):
A systematic study of a series of InGaAs/GaAs lasers in the 1-1.3 μm optical range based on quantum wells (2D), quantum dots (0D), and quantum well-dots of transitional (0D/2D) dimensionality is presented. In a wide range of pump currents, the dependences of the lasing wavelength on the layer gain constant, a parameter which allows comparing lasers with different types of active region and various waveguide designs, are measured and analyzed. It is shown that the maximum optical gain of the quantum well-dots is significantly higher, and the range of lasing rawavelengths achievable in edge-emitting lasers without external resonators is wider than in lasers based on quantum wells and quantum dots. Keywords: semiconductor laser, quantum well, quantum dots, quantum well-dots, optical gain.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

LEO, KARL, JAGDEEP SHAH, ERNST O. GÖBEL, THEODORE C. DAMEN, STEFAN SCHMITT-RINK, WILFRIED SCHÄFER, JOACHIM F. MÜLLER e KLAUS KÖHLER. "QUANTUM BEATS OF EXCITONS IN QUANTUM WELLS". Modern Physics Letters B 05, n. 02 (20 gennaio 1991): 87–93. http://dx.doi.org/10.1142/s0217984991000113.

Testo completo
Abstract (sommario):
We briefly review our recent observations of quantum beats of excitons in quantum wells. The quantum beats are observed as an oscillatory structure in the polarization decay of energetically closely spaced excitons which are coherently excited by ultrashort laser pulses.
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Göbel, E. O., K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller e K. Köhler. "Quantum beats of excitons in quantum wells". Physical Review Letters 64, n. 15 (9 aprile 1990): 1801–4. http://dx.doi.org/10.1103/physrevlett.64.1801.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Rogacheva, E. I., T. V. Tavrina, O. N. Nashchekina, S. N. Grigorov, K. A. Nasedkin, M. S. Dresselhaus e S. B. Cronin. "Quantum size effects in PbSe quantum wells". Applied Physics Letters 80, n. 15 (15 aprile 2002): 2690–92. http://dx.doi.org/10.1063/1.1469677.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Fonoberov, V. A., E. P. Pokatilov, V. M. Fomin e J. T. Devreese. "Photoluminescence of tetrahedral quantum-dot quantum wells". Physica E: Low-dimensional Systems and Nanostructures 26, n. 1-4 (febbraio 2005): 63–66. http://dx.doi.org/10.1016/j.physe.2004.08.024.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Sherwin, Mark S., Keith Craig, Bryan Galdrikian, James Heyman, Andrea Markelz, Ken Campman, Simon Fafard, Pete F. Hopkins e Art Gossard. "Nonlinear quantum dynamics in semiconductor quantum wells". Physica D: Nonlinear Phenomena 83, n. 1-3 (maggio 1995): 229–42. http://dx.doi.org/10.1016/0167-2789(94)00266-s.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Shah, J., K. Leo, E. Göbel, S. Schmitt-Rink, T. Damen, W. Schäfer e K. Köhler. "Quantum beats of excitons in quantum wells". Surface Science 267, n. 1-3 (gennaio 1992): 304–9. http://dx.doi.org/10.1016/0039-6028(92)91143-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Hai, Guo-Qiang, e Nelson Studart. "Quantum transport in δ-doped quantum wells". Physical Review B 55, n. 11 (15 marzo 1997): 6708–11. http://dx.doi.org/10.1103/physrevb.55.6708.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Wang, Xinghua, Qi Yu, Reino Laiho, Chengfang Li, Jian Liu, Xiaoping Yang e Houzhi Zheng. "Quantum interference effect in double quantum wells". Materials Science and Engineering: B 35, n. 1-3 (dicembre 1995): 372–75. http://dx.doi.org/10.1016/0921-5107(95)01359-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Vladimirova, M., D. Scalbert e M. Nawrocki. "Exciton quantum beats in CdMnTe quantum wells". physica status solidi (c) 2, n. 2 (febbraio 2005): 910–13. http://dx.doi.org/10.1002/pssc.200460336.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Wang, T., D. Nakagawa, J. Wang, T. Sugahara e S. Sakai. "Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells". Applied Physics Letters 73, n. 24 (14 dicembre 1998): 3571–73. http://dx.doi.org/10.1063/1.122810.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Kohl, M., D. Heitmann, P. Grambow e K. Ploog. "Luminescence of quantum-well exciton polaritons from microstructuredAlxGa1−xAs−GaAsmultiple quantum wells". Physical Review B 37, n. 18 (15 giugno 1988): 10927–30. http://dx.doi.org/10.1103/physrevb.37.10927.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Banyai, L., I. Galbraith e H. Haug. "Biexcitonic nonlinearity in GaAs/GaxAl1−xAs quantum wells and quantum-well wires". Physical Review B 38, n. 6 (15 agosto 1988): 3931–36. http://dx.doi.org/10.1103/physrevb.38.3931.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Pérez-Merchancano, S. T., M. de Dios-Leyva e L. E. Oliveira. "Photoluminescence under quasistationary excitation conditions in quantum wells and quantum-well wires". Journal of Luminescence 72-74 (giugno 1997): 389–90. http://dx.doi.org/10.1016/s0022-2313(96)00354-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Christian, George, Menno Kappers, Fabien Massabuau, Colin Humphreys, Rachel Oliver e Philip Dawson. "Effects of a Si-doped InGaN Underlayer on the Optical Properties of InGaN/GaN Quantum Well Structures with Different Numbers of Quantum Wells". Materials 11, n. 9 (15 settembre 2018): 1736. http://dx.doi.org/10.3390/ma11091736.

Testo completo
Abstract (sommario):
In this paper we report on the optical properties of a series of InGaN polar quantum well structures where the number of wells was 1, 3, 5, 7, 10 and 15 and which were grown with the inclusion of an InGaN Si-doped underlayer. When the number of quantum wells is low then the room temperature internal quantum efficiency can be dominated by thermionic emission from the wells. This can occur because the radiative recombination rate in InGaN polar quantum wells can be low due to the built-in electric field across the quantum well which allows the thermionic emission process to compete effectively at room temperature limiting the internal quantum efficiency. In the structures that we discuss here, the radiative recombination rate is increased due to the effects of the Si-doped underlayer which reduces the electric field across the quantum wells. This results in the effect of thermionic emission being largely eliminated to such an extent that the internal quantum efficiency at room temperature is independent of the number of quantum wells.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Kvon, Ze Don. "Semiconductor Quantum Wells and Nanostructures". Nanomaterials 13, n. 13 (24 giugno 2023): 1924. http://dx.doi.org/10.3390/nano13131924.

Testo completo
Abstract (sommario):
Semiconductor quantum wells and nanostructures have been the main quantum and classical physical objects in condensed matter physics for over half a century, since the discovery of the two-dimensional electron gas in silicon MOSFETs and size quantization in thin bismuth films [...]
Gli stili APA, Harvard, Vancouver, ISO e altri
40

EI Ghazi, Haddou. "Nanomaterials-Based Multiple Quantum Wells for High Photovoltaic Conversion Solar Cells". Nanomedicine & Nanotechnology Open Access 9, n. 1 (2024): 1–5. http://dx.doi.org/10.23880/nnoa-16000288.

Testo completo
Abstract (sommario):
Using metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) and pulse Laser deposition (PLD) techniques on GaN, Silicon, Silicon Carbide and sapphire substrates, high efficiency InGaN/GaN solar cells are reported with a particular emphasis on the work and achievements made with multi-junction tandem and Nanomaterials (Quantum well (QW), Multiple Quantum Wells (MQW), and Quantum Dots (QD)). An effective method for increasing photon absorption in ultrathin cells made for the best possible photovoltaic response is the InGaN/GaN QW system. To maximize light absorption, the quantum well and barrier thicknesses and number of wells in the MQW active region must be adjusted.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Wasiak, Michał. "Quantum-enhanced uniformity of carrier injection into successive quantum wells of multi-quantum-well structures". Physica E: Low-dimensional Systems and Nanostructures 41, n. 7 (giugno 2009): 1253–57. http://dx.doi.org/10.1016/j.physe.2009.02.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Huant, Serge, Ariane Mandray, Jing Zhu, Steven G. Louie, Tao Pang e Bernard Etienne. "Well-width dependence ofD−cyclotron resonance in quantum wells". Physical Review B 48, n. 4 (15 luglio 1993): 2370–75. http://dx.doi.org/10.1103/physrevb.48.2370.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Huang, X. R., D. R. Harken, A. N. Cartwright, Arthur L. Smirl, J. L. Sánchez‐Rojas, A. Sacedón, E. Calleja e E. Muñoz. "In‐well screening nonlinearities in piezoelectric multiple quantum wells". Applied Physics Letters 67, n. 7 (14 agosto 1995): 950–52. http://dx.doi.org/10.1063/1.114705.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Barsan, Victor. "Square wells, quantum wells and ultra-thin metallic films". Philosophical Magazine 94, n. 2 (7 ottobre 2013): 190–207. http://dx.doi.org/10.1080/14786435.2013.845313.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Andrearczyk, T., J. Jaroszyński, J. Wróbel, G. Karczewski, T. Wojtowicz, E. Papis, E. Kamińska, A. Piotrowska, D. Popović e T. Dietl. "Quantum Hall Ferromagnet in Magnetically-Doped Quantum Wells". Acta Physica Polonica A 104, n. 2 (agosto 2003): 93–102. http://dx.doi.org/10.12693/aphyspola.104.93.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Choi, Miri, Chungwei Lin, Matthew Butcher, Cesar Rodriguez, Qian He, Agham B. Posadas, Albina Y. Borisevich, Stefan Zollner e Alexander A. Demkov. "Quantum confinement in transition metal oxide quantum wells". Applied Physics Letters 106, n. 19 (11 maggio 2015): 192902. http://dx.doi.org/10.1063/1.4921013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Huang, Danhong, e Yang Zhao. "Interband quantum coherence in intersubband coupled quantum wells". Physical Review A 51, n. 2 (1 febbraio 1995): 1617–21. http://dx.doi.org/10.1103/physreva.51.1617.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Marquezini, M. V., M. J. S. P. Brasil, M. A. Cotta, J. A. Brum e A. A. Bernussi. "Magnetoexciton anisotropy in quantum wells versus quantum wires". Physical Review B 53, n. 24 (15 giugno 1996): R16156—R16159. http://dx.doi.org/10.1103/physrevb.53.r16156.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Hopkins, P. F., A. J. Rimberg, R. M. Westervelt, G. Tuttle e H. Kroemer. "Quantum Hall effect in InAs/AlSb quantum wells". Applied Physics Letters 58, n. 13 (aprile 1991): 1428–30. http://dx.doi.org/10.1063/1.105188.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Jaroszyński, J., T. Andrearczyk, J. Wróbel, G. Karczewski, T. Wojtowicz, E. Papis, E. Kamińska, A. Piotrowska, Dragana Popović e T. Dietl. "Quantum Hall ferromagnet in magnetically-doped quantum wells". Physica E: Low-dimensional Systems and Nanostructures 22, n. 1-3 (aprile 2004): 76–81. http://dx.doi.org/10.1016/j.physe.2003.11.220.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia