Letteratura scientifica selezionata sul tema "Quantum electronics"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Quantum electronics".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Quantum electronics"
Mukhammadova, Dilafruz Ahmadovna. "The Role Of Quantum Electronics In Alternative Energy". American Journal of Applied sciences 03, n. 01 (30 gennaio 2021): 69–78. http://dx.doi.org/10.37547/tajas/volume03issue01-12.
Testo completoZwanenburg, Floris A., Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith e Mark A. Eriksson. "Silicon quantum electronics". Reviews of Modern Physics 85, n. 3 (10 luglio 2013): 961–1019. http://dx.doi.org/10.1103/revmodphys.85.961.
Testo completoSAKAKI, H. "Quantum Microstructures and Quantum Wave Electronics." Nihon Kessho Gakkaishi 33, n. 3 (1991): 107–18. http://dx.doi.org/10.5940/jcrsj.33.107.
Testo completoGuo, Cheng, Jin Lin, Lian-Chen Han, Na Li, Li-Hua Sun, Fu-Tian Liang, Dong-Dong Li et al. "Low-latency readout electronics for dynamic superconducting quantum computing". AIP Advances 12, n. 4 (1 aprile 2022): 045024. http://dx.doi.org/10.1063/5.0088879.
Testo completoBorgarino, Mattia, e Alessandro Badiali. "Quantum Gates for Electronics Engineers". Electronics 12, n. 22 (15 novembre 2023): 4664. http://dx.doi.org/10.3390/electronics12224664.
Testo completoLiu, Mengxia, Nuri Yazdani, Maksym Yarema, Maximilian Jansen, Vanessa Wood e Edward H. Sargent. "Colloidal quantum dot electronics". Nature Electronics 4, n. 8 (agosto 2021): 548–58. http://dx.doi.org/10.1038/s41928-021-00632-7.
Testo completoTaichenachev, Alexey V. "Department of Quantum Electronics". Siberian Journal of Physics 1, n. 1 (2006): 83–84. http://dx.doi.org/10.54238/1818-7994-2006-1-1-83-84.
Testo completoSinclair, B. D. "Lasers and quantum electronics". Physics Bulletin 37, n. 10 (ottobre 1986): 412. http://dx.doi.org/10.1088/0031-9112/37/10/013.
Testo completoDragoman, M., e D. Dragoman. "Graphene-based quantum electronics". Progress in Quantum Electronics 33, n. 6 (novembre 2009): 165–214. http://dx.doi.org/10.1016/j.pquantelec.2009.08.001.
Testo completoRost, Jan-Michael. "Tubes for quantum electronics". Nature Photonics 4, n. 2 (febbraio 2010): 74–75. http://dx.doi.org/10.1038/nphoton.2009.279.
Testo completoTesi sul tema "Quantum electronics"
Li, Elise Yu-Tzu. "Electronic structure and quantum conductance of molecular and nano electronics". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/65270.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 129-137).
This thesis is dedicated to the application of a large-scale first-principles approach to study the electronic structure and quantum conductance of realistic nanomaterials. Three systems are studied using Landauer formalism, Green's function technique and maximally localized Wannier functions. The main focus of this thesis lies on clarifying the effect of chemical modifications on electron transport at the nanoscale, as well as on predicting and designing new type of molecular and nanoelectronic devices. In the first study, we suggest and investigate a quantum interference effect in the porphyrin family molecules. We show that the transmission through a porphyrin molecule at or near the Fermi level varies by orders of magnitude following hydrogen tautomerization. The switching behavior identified in porphyrins implies new application directions in single molecular devices and molecular-size memory elements. Moving on from single molecules to a larger scale, we study the effect of chemical functionalizations to the transport properties of carbon nanotubes. We propose several covalent functionalization schemes for carbon nanotubes which display switchable on/off conductance in metallic tubes. The switching action is achieved by reversible control of bond-cleavage chemistry in [1+2] cycloadditions, via the 8p 3 8s p 2 rehybridization it induces; this leads to remarkable changes of conductance even at very low degrees of functionalization. Several strategies for real-time control on the conductance of carbon nanotubes are then proposed. Such designer functional groups would allow for the first time direct control of the electrical properties of metallic carbon nanotubes, with extensive applications in nanoscale devices. In the last part of the thesis we address the issue of low electrical conductivity observed in carbon nanotube networks. We characterize intertube tunneling between carbon nanotube junctions with or without a covalent linker, and explore the possibility of improving intertube coupling and enhance electrical tunneling by transition metal adsorptions on CNT surfaces. The strong hybridization between transition metal d orbitals with the CNT [pi] orbitals serves as an excellent electrical bridge for a broken carbon nanotube junction. The binding and coupling between a transition metal atom and sandwiching nanotubes can be even stronger in case of nitrogendoped carbon nanotubes. Our studies suggest a more effective strategy than the current cross-linking methods used in carbon nanotube networks.
by Elise Yu-Tzu Li.
Ph.D.
Midgley, Stuart. "Quantum waveguide theory". University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Testo completoLynch, Alastair M. "Low Cost and Flexible Electronics for Quantum Key Distribution and Quantum Information". Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520592.
Testo completoHinzer, Karin. "Semiconductor quantum dot lasers". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0003/MQ36702.pdf.
Testo completoEl, Kass Abdallah. "Milli-Kelvin Electronics at the Quantum-Classical Interface". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26889.
Testo completoLittle, Reginald Bernard. "The synthesis and characterization of some II-VI semiconductor quantum dots, quantum shells and quantum wells". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30573.
Testo completoNakanishi, Toshihiro. "Coupled-resonator-based metamaterials emulating quantum systems". 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/204563.
Testo completoKhalid, Ahmed Usman. "FPGA emulation of quantum circuits". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98979.
Testo completoMcNeil, Robert Peter Gordon. "Surface acoustic wave quantum electronic devices". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610718.
Testo completoJiang, Jun. "A Quantum Chemical View of Molecular and Nano-Electronics". Doctoral thesis, Stockholm : Biotechnology, Kungliga tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4335.
Testo completoLibri sul tema "Quantum electronics"
R, Whinnery John, a cura di. Quantum electronics. New York: IEEE, 1992.
Cerca il testo completoSalter, Heath. Quantum Electronics. New Delhi: World Technologies, 2011.
Cerca il testo completoKose, Volkmar. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Cerca il testo completoKose, Volkmar, a cura di. Superconducting Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1.
Testo completoVolkmar, Kose, e Albrecht M, a cura di. Superconducting quantum electronics. Berlin: Springer-Verlag, 1989.
Cerca il testo completoProkhorov, A. M., e I. Ursu, a cura di. Trends in Quantum Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-10624-2.
Testo completoHirayama, Yoshiro, Kazuhiko Hirakawa e Hiroshi Yamaguchi, a cura di. Quantum Hybrid Electronics and Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1201-6.
Testo completoInstitute of Electrical and Electronics Engineers., a cura di. IEEE journal of quantum electronics. Piscatawy: IEEE, 1986.
Cerca il testo completoIEEE Lasers and Electro-Optics Society. e Institute of Electrical and Electronics Engineers., a cura di. IEEE journal of quantum electronics. [s.l.]: IEEE Lasers and Electro-Optics Society, 1991.
Cerca il testo completoConference on Lasers and Electro-Optics. International quantum electronics conference (IQEC). Washington, D.C: Optical Society of America, 2006.
Cerca il testo completoCapitoli di libri sul tema "Quantum electronics"
Goser, Karl, Peter Glösekötter e Jan Dienstuhl. "Quantum Electronics". In Nanoelectronics and Nanosystems, 151–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05421-5_10.
Testo completoKolawole, Michael Olorunfunmi. "Elements of Quantum Electronics". In Electronics, 271–316. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003052913-9.
Testo completoSuits, Bryan H. "Quantum Logic". In Electronics for Physicists, 305–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36364-1_15.
Testo completoKawabata, A. "Quantum Wires". In Mesoscopic Physics and Electronics, 54–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71976-9_8.
Testo completoPevzner, Vadim, e Karl Hess. "Quantum Ray Tracing: A New Approach to Quantum Transport in Mesoscopic Systems". In Computational Electronics, 227–30. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-2124-9_45.
Testo completoVan Haesendonck, C., e Y. Bruynseraede. "Quantum Interference in Normal Metals". In Superconducting Electronics, 19–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83885-9_2.
Testo completoLübbig, H. "Classical Dynamics of Josephson Tunnelling and Its Quantum Limitations". In Superconducting Quantum Electronics, 2–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_1.
Testo completoGutmann, P., e H. Bachmair. "Cryogenic Current Comparator Metrology". In Superconducting Quantum Electronics, 255–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_10.
Testo completoAlbrecht, M., e W. Kessel. "Fast SQUID Pseudo Random Generators". In Superconducting Quantum Electronics, 269–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_11.
Testo completoBrunk, G. "Modelling of Resistive Networks for Dispersive Tunnel Processes". In Superconducting Quantum Electronics, 24–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-95592-1_2.
Testo completoAtti di convegni sul tema "Quantum electronics"
Arnold, John M. "Teaching quantum electronics to electronic engineering undergraduates". In Education and Training in Optics and Photonics 2001. SPIE, 2002. http://dx.doi.org/10.1117/12.468723.
Testo completoKrokhin, O. N. "Quantum Electronics 50th Jubilee". In SPIE Proceedings, a cura di Yuri N. Kulchin, Jinping Ou, Oleg B. Vitrik e Zhi Zhou. SPIE, 2007. http://dx.doi.org/10.1117/12.726441.
Testo completoSaglamyurek, E., N. Sinclair, J. Jin, J. S. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler e W. Tittel. "Quantum Memory For Quantum Repeaters". In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i93.
Testo completoSchneider, Hans Christian, e Weng W. Chow. "Quantum coherence in semiconductor quantum dots". In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithf2.
Testo completo"2005 European Quantum Electronics Conference". In EQEC '05. European Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/eqec.2005.1567171.
Testo completo"Joint Council on Quantum Electronics". In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452324.
Testo completoBishnoi, Dimple. "Quantum dots: Rethinking the electronics". In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946309.
Testo completoKrokhin, O. N. "Fifty Years of Quantum Electronics". In ZABABAKHIN SCIENTIFIC TALKS - 2005: International Conference on High Energy Density Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2337172.
Testo completoSenami, Masato, e Akitomo Tachibana. "Quantum chemical approaches to the electronic structures of nano-electronics materials". In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667357.
Testo completoFurusawa, Akira. "Quantum Teleportation and Quantum Information Processing". In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qtha1.
Testo completoRapporti di organizzazioni sul tema "Quantum electronics"
De Heer, Walter A. Epitaxial Graphene Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maggio 2014. http://dx.doi.org/10.21236/ada604108.
Testo completoBocko, Mark F., e Marc J. Feldman. Quantum Computing with Superconducting Electronics. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1998. http://dx.doi.org/10.21236/ada344625.
Testo completoO'Connell, R. F. Small Systems: Single Electronics/Quantum Transport. Fort Belvoir, VA: Defense Technical Information Center, settembre 1994. http://dx.doi.org/10.21236/ada298817.
Testo completovan der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, marzo 2021. http://dx.doi.org/10.53109/ypdh3824.
Testo completoElmgren, Karson, Ashwin Acharya e Will Will Hunt. Superconductor Electronics Research. Center for Security and Emerging Technology, novembre 2021. http://dx.doi.org/10.51593/20210003.
Testo completoBraga, Davide. NECQST: Novel Electronics for Cryogenic Quantum Sensors Technology. Office of Scientific and Technical Information (OSTI), ottobre 2019. http://dx.doi.org/10.2172/1630711.
Testo completoFluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, maggio 1992. http://dx.doi.org/10.21236/ada253666.
Testo completoGaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1990. http://dx.doi.org/10.21236/ada218772.
Testo completoSchoelkopf, R. J., e S. M. Girvin. Student Support for Quantum Computing With Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2006. http://dx.doi.org/10.21236/ada442606.
Testo completoSchoelkopf, R. J., e S. M. Girvin. Student Support for Quantum Computing with Single Cooper-Pair Electronics. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2006. http://dx.doi.org/10.21236/ada465023.
Testo completo