Articoli di riviste sul tema "Quantum dots"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Quantum dots.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Quantum dots".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Aharonovich, Igor. "Quantum dots light up ahead". Photonics Insights 1, n. 2 (2022): C04. http://dx.doi.org/10.3788/pi.2022.c04.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kouwenhoven, Leo, e Charles Marcus. "Quantum dots". Physics World 11, n. 6 (giugno 1998): 35–40. http://dx.doi.org/10.1088/2058-7058/11/6/26.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Reed, Mark A. "Quantum Dots". Scientific American 268, n. 1 (gennaio 1993): 118–23. http://dx.doi.org/10.1038/scientificamerican0193-118.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Zhou, Xiaoyan, Liang Zhai e Jin Liu. "Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies". Photonics Insights 1, n. 2 (2022): R07. http://dx.doi.org/10.3788/pi.2022.r07.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Artemyev, M. V., e U. Woggon. "Quantum dots in photonic dots". Applied Physics Letters 76, n. 11 (13 marzo 2000): 1353–55. http://dx.doi.org/10.1063/1.126029.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Loss, Daniel, e David P. DiVincenzo. "Quantum computation with quantum dots". Physical Review A 57, n. 1 (1 gennaio 1998): 120–26. http://dx.doi.org/10.1103/physreva.57.120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

López, Juan Carlos. "Quantum leap for quantum dots". Nature Reviews Neuroscience 4, n. 3 (marzo 2003): 163. http://dx.doi.org/10.1038/nrn1066.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zunger, Alex. "Semiconductor Quantum Dots". MRS Bulletin 23, n. 2 (febbraio 1998): 15–17. http://dx.doi.org/10.1557/s0883769400031213.

Testo completo
Abstract (sommario):
Semiconductor “quantum dots” refer to nanometer-sized, giant (103–105 atoms) molecules made from ordinary inorganic semiconductor materials such as Si, InP, CdSe, etc. They are larger than the traditional “molecular clusters” (~1 nanometer containing ≤100 atoms) common in chemistry yet smaller than the structures of the order of a micron, manufactured by current electronic-industry lithographic techniques. Quantum dots can be made by colloidal chemistry techniques (see the articles by Alivisatos and by Nozik and Mićić in this issue), by controlled coarsening during epitaxial growth (see the article by Bimberg et al. in this issue), by size fluctuations in conventional quantum wells (see the article by Gammon in this issue), or via nano-fabrication (see the article by Tarucha in this issue).
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Barachevsky, V. A. "Photochromic quantum dots". Izvestiya vysshikh uchebnykh zavedenii. Fizika, n. 11 (2021): 30–44. http://dx.doi.org/10.17223/00213411/64/11/30.

Testo completo
Abstract (sommario):
The analysis of the results of fundamental and applied research in the field of creation of photochromic nanoparticles of the "core-shell" type, in which semiconductor nanocrystals - quantum dots were used as a core, and the shell included physically or chemically sorbed molecules of photochromic thermally relaxing (spiropyrans, spirooxazines , chromenes, azo compounds) or thermally irreversible (diarylethenes, fulgimides) compounds. It has been shown that such nanoparticles provide reversible modulation of the QD radiation intensity, which can be used in information and biomedical technologies.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Barachevsky, V. A. "Photochromic Quantum Dots". Russian Physics Journal 64, n. 11 (marzo 2022): 2017–34. http://dx.doi.org/10.1007/s11182-022-02551-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Evanko, Daniel. "Bioluminescent quantum dots". Nature Methods 3, n. 4 (aprile 2006): 240. http://dx.doi.org/10.1038/nmeth0406-240a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Lindberg, V., e B. Hellsing. "Metallic quantum dots". Journal of Physics: Condensed Matter 17, n. 13 (19 marzo 2005): S1075—S1094. http://dx.doi.org/10.1088/0953-8984/17/13/004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Kaputkina, N. E., e Yu E. Lozovik. "“Spherical” quantum dots". Physics of the Solid State 40, n. 11 (novembre 1998): 1935–36. http://dx.doi.org/10.1134/1.1130690.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Dukes, Albert D., James R. McBride e Sandra Rosenthal. "Luminescent Quantum Dots". ECS Transactions 33, n. 33 (17 dicembre 2019): 3–16. http://dx.doi.org/10.1149/1.3578017.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Tinkham, M. "Metallic quantum dots". Philosophical Magazine B 79, n. 9 (settembre 1999): 1267–80. http://dx.doi.org/10.1080/13642819908216970.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Han, Gang, Taleb Mokari, Caroline Ajo-Franklin e Bruce E. Cohen. "Caged Quantum Dots". Journal of the American Chemical Society 130, n. 47 (26 novembre 2008): 15811–13. http://dx.doi.org/10.1021/ja804948s.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Pile, David. "Intraband quantum dots". Nature Photonics 9, n. 1 (23 dicembre 2014): 7. http://dx.doi.org/10.1038/nphoton.2014.317.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Guyot-Sionnest, Philippe. "Colloidal quantum dots". Comptes Rendus Physique 9, n. 8 (ottobre 2008): 777–87. http://dx.doi.org/10.1016/j.crhy.2008.10.006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Zhou, Weidong, e James J. Coleman. "Semiconductor quantum dots". Current Opinion in Solid State and Materials Science 20, n. 6 (dicembre 2016): 352–60. http://dx.doi.org/10.1016/j.cossms.2016.06.006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Gershoni, David. "Pyramidal quantum dots". Nature Photonics 4, n. 5 (maggio 2010): 271–72. http://dx.doi.org/10.1038/nphoton.2010.96.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Nomura, Masahiro, e Yasuhiko Arakawa. "Shaking quantum dots". Nature Photonics 6, n. 1 (22 dicembre 2011): 9–10. http://dx.doi.org/10.1038/nphoton.2011.323.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Golan, Yuval, Lev Margulis, Gary Hodes, Israel Rubinstein e John L. Hutchison. "Electrodeposited quantum dots". Surface Science 311, n. 1-2 (maggio 1994): L633—L640. http://dx.doi.org/10.1016/0039-6028(94)90465-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Gaisler, A. V., I. A. Derebezov, V. A. Gaisler, D. V. Dmitriev, A. I. Toropov, A. S. Kozhukhov, D. V. Shcheglov, A. V. Latyshev e A. L. Aseev. "AlInAs quantum dots". JETP Letters 105, n. 2 (gennaio 2017): 103–9. http://dx.doi.org/10.1134/s0021364017020096.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Vishnoi, Pratap, Madhulika Mazumder, Manaswee Barua, Swapan K. Pati e C. N. R. Rao. "Phosphorene quantum dots". Chemical Physics Letters 699 (maggio 2018): 223–28. http://dx.doi.org/10.1016/j.cplett.2018.03.069.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

H. Sargent, E. "Infrared Quantum Dots". Advanced Materials 17, n. 5 (8 marzo 2005): 515–22. http://dx.doi.org/10.1002/adma.200401552.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Nozik, A. J., H. Uchida, P. V. Kamat e C. Curtis. "GaAs Quantum Dots". Israel Journal of Chemistry 33, n. 1 (1993): 15–20. http://dx.doi.org/10.1002/ijch.199300004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Bacon, Mitchell, Siobhan J. Bradley e Thomas Nann. "Graphene Quantum Dots". Particle & Particle Systems Characterization 31, n. 4 (27 novembre 2013): 415–28. http://dx.doi.org/10.1002/ppsc.201300252.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Tárnok, Attila. "Quantum of dots". Cytometry Part A 77A, n. 10 (24 settembre 2010): 905–6. http://dx.doi.org/10.1002/cyto.a.20971.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Schneider, H. C., W. W. Chow, P. M. Smowton, E. J. Pearce e S. W. Koch. "Quantum Dots: Anomalous Carrier-Induced Dispersion in Semiconductor Quantum Dots". Optics and Photonics News 13, n. 12 (1 dicembre 2002): 50. http://dx.doi.org/10.1364/opn.13.12.000050.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Sánchez Pérez, Karla J., J. C. García-Melgarejo e J. J. Sánchez-Mondragón. "Semi classical quantum dots in their own micro cavity". Acta Universitaria 23 (6 dicembre 2013): 23–26. http://dx.doi.org/10.15174/au.2013.557.

Testo completo
Abstract (sommario):
Among quantum dots there is an interaction called Foerster interaction, it consists on the transfer of one exciton from a quantum dot to another in a non-radiative energy transfer mechanism. In this work, we develop a model of the interaction of a pair of coupled Quan­tum Dots (QDs), each one in its own micro cavity, interacting with its own classical field.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Shimada, Hiroshi, Youiti Ootuka, Shun-ichi Kobayashi, Shingo Katsumoto e Akira Endo. "Quantum Charge Fluctuations in Quantum Dots". Journal of the Physical Society of Japan 69, n. 3 (15 marzo 2000): 828–35. http://dx.doi.org/10.1143/jpsj.69.828.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Burkard, Guido, Daniel Loss e David P. DiVincenzo. "Coupled quantum dots as quantum gates". Physical Review B 59, n. 3 (15 gennaio 1999): 2070–78. http://dx.doi.org/10.1103/physrevb.59.2070.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Lozada-Cassou, M., Shi-Hai Dong e Jiang Yu. "Quantum features of semiconductor quantum dots". Physics Letters A 331, n. 1-2 (ottobre 2004): 45–52. http://dx.doi.org/10.1016/j.physleta.2004.08.047.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Molotkov, S. N., e S. S. Nazin. "Quantum cryptography based on quantum dots". Journal of Experimental and Theoretical Physics Letters 63, n. 8 (aprile 1996): 687–93. http://dx.doi.org/10.1134/1.567087.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Ferry, D. K., R. A. Akis, D. P. Pivin Jr, J. P. Bird, N. Holmberg, F. Badrieh e D. Vasileska. "Quantum transport in ballistic quantum dots". Physica E: Low-dimensional Systems and Nanostructures 3, n. 1-3 (ottobre 1998): 137–44. http://dx.doi.org/10.1016/s1386-9477(98)00228-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Kiraz, A., C. Reese, B. Gayral, Lidong Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu e A. Imamoglu. "Cavity-quantum electrodynamics with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, n. 2 (26 febbraio 2003): 129–37. http://dx.doi.org/10.1088/1464-4266/5/2/303.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Pachos, Jiannis K., e Vlatko Vedral. "Topological quantum gates with quantum dots". Journal of Optics B: Quantum and Semiclassical Optics 5, n. 6 (16 ottobre 2003): S643—S646. http://dx.doi.org/10.1088/1464-4266/5/6/016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Masumoto, Yasuaki, Ivan V. Ignatiev, Kazuhiro Nishibayashi, Tsuyoshi Okuno, Sergey Yu Verbin e Irina A. Yugova. "Quantum beats in semiconductor quantum dots". Journal of Luminescence 108, n. 1-4 (giugno 2004): 177–80. http://dx.doi.org/10.1016/j.jlumin.2004.01.038.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls e Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie 124, n. 50 (7 novembre 2012): 12641–44. http://dx.doi.org/10.1002/ange.201206301.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Bryant, Garnett W. "Quantum dots in quantum well structures". Journal of Luminescence 70, n. 1-6 (ottobre 1996): 108–19. http://dx.doi.org/10.1016/0022-2313(96)00048-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Huang, Zhongkai, Jinfeng Qu, Xiangyang Peng, Wenliang Liu, Kaiwang Zhang, Xiaolin Wei e Jianxin Zhong. "Quantum confinement in graphene quantum dots". physica status solidi (RRL) - Rapid Research Letters 8, n. 5 (31 marzo 2014): 436–40. http://dx.doi.org/10.1002/pssr.201409064.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Roy, Xavier, Christine L. Schenck, Seokhoon Ahn, Roger A. Lalancette, Latha Venkataraman, Colin Nuckolls e Michael L. Steigerwald. "Quantum Soldering of Individual Quantum Dots". Angewandte Chemie International Edition 51, n. 50 (7 novembre 2012): 12473–76. http://dx.doi.org/10.1002/anie.201206301.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Wang, Feng, Niladri S. Karan, Hue Minh Nguyen, Benjamin D. Mangum, Yagnaseni Ghosh, Chris J. Sheehan, Jennifer A. Hollingsworth e Han Htoon. "Quantum Dots: Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots (Small 38/2015)". Small 11, n. 38 (ottobre 2015): 5176. http://dx.doi.org/10.1002/smll.201570238.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)". Biomarkers and Drug Discovery 1, n. 1 (5 novembre 2018): 01. http://dx.doi.org/10.31579/2642-9799/004.

Testo completo
Abstract (sommario):
Aptamers are short single stranded oligonucleotide sequences that exhibit high binding affinity and high specificity against their target molecule. Binding affinity and specificity are crucial features for aptamers in order to exploit their therapeutic and diagnostic potential and to make them an appealing candidate for the commercial market1,2. Aptamers contain functional moieties that can fold into different conformation such as hairpin stem and loops, G-quadruplexes, and pseudoknots. A study led by Dr Harleen Kaur involving unique stem-loop truncation strategy was employed to find the binding domain in a 66-mer long DNA aptamer sequence against the heparin binding domain of vascular endothelial growth factor (VEGF165) protein1. The results from the work demonstrated identification of a 26-mer long aptamer sequence referred as SL2-B in the paper with improvement in the binding affinity by more than 200-folds (Kd = 0.5nM) against VEGF protein. To improve the biostability of the aptamer in the biological fluids, the phosphorothioate linkages (PS-linkages) in the phosphate backbone of the DNA were introduced at the 5’-and 3’-termini of the obtained SL2-B aptamer sequence. The PS-modified SL2-B aptamer sequence demonstrated significant improvement in the stability without comprising
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Kaur, Haleena. "Cellular uptake of aptamer by Quantum Dots (QDs)". Biomarkers and Drug Discovery 1, n. 1 (5 novembre 2018): 01. http://dx.doi.org/10.31579/2642-9799/003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Stride, John Arron, e Fatemeh Mirnajafizadeh. "A Brief Review on Core/shell Quantum Dots". SDRP Journal of Nanotechnology & Material Science 3, n. 1 (2020): 121–26. http://dx.doi.org/10.25177/jnms.3.1.ra.10624.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

JX, Guo. "Graphene-Quantum Dots Hybrid Based Dual Band Photodetector". Physical Science & Biophysics Journal 7, n. 1 (5 gennaio 2023): 1–4. http://dx.doi.org/10.23880/psbj-16000234.

Testo completo
Abstract (sommario):
Graphene, which can detect a broad spectrum from ultraviolet to terahertz, is a promising photodetector material because it offers a broad spectral bandwidth and fast response times. However, the nature of weak light absorption has limited the responsivity of graphene-based photodetectors. Here, we demonstrate a responsivity of up to ∼6.7×103 A/W in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. At the same time, benefits from gate-tunability, the device can response from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Dudu, Veronica, Melissa Ramcharan, M. Lane Gilchrist, Eric C. Holland e Maribel Vazquez. "Liposome Delivery of Quantum Dots to the Cytosol of Live Cells". Journal of Nanoscience and Nanotechnology 8, n. 5 (1 maggio 2008): 2293–300. http://dx.doi.org/10.1166/jnn.2008.185.

Testo completo
Abstract (sommario):
An increasing number of studies have demonstrated the multiple advantages of using nanocrystals, such as Quantum dots, for biological imaging. Quantum dots functionalized with biomolecules on their surfaces were shown to be able to bind to specific extracellular targets via specific recognition and to be internalized inside the cells, thereby allowing the imaging of intracellular pathways. However, the use of Quantum dots for live tracking of intracellular molecules is relatively limited because of the difficulties encountered during the induction of Quantum dots across living cell membranes. In this study we show that cationic liposomes can deliver low concentrations of non-targeted Quantum dots into the cytosol of living cells via a lipid-mediated fusion with the cell membrane. The intracellular Quantum dots exhibit aggregation that appears dependent upon their concentration, but does not visibly affect cell viability. Our results point towards the use of cationic liposomes as an effective delivery system for targeted Quantum dots within the cell cytosol, which would facilitate live cell imaging of the labeled molecules.
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Kaur, Ajaypal, Komal Pandey, Ramandeep Kaur, Nisha Vashishat e Manpreet Kaur. "Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications as Sensors". Chemosensors 10, n. 9 (15 settembre 2022): 367. http://dx.doi.org/10.3390/chemosensors10090367.

Testo completo
Abstract (sommario):
Carbon-based quantum dots and their nanocomposites have sparked immense interest for researchers as sensors due to their attractive physico-chemical properties caused by edge effects and quantum confinement. In this review article, we have discussed the synthesis and application of nanocomposites of graphene quantum dots (GQDs) and carbon quantum dots (CQDs). Different synthetic strategies for CQDs, GQDs, and their nanocomposites, are categorized as top-down and bottom-up approaches which include laser ablation, arc-discharge, chemical oxidation, ultrasonication, oxidative cleavage, microwave synthesis, thermal decomposition, solvothermal or hydrothermal method, stepwise organic synthesis, carbonization from small molecules or polymers, and impregnation. A comparison of methodologies is presented. The environmental application of nanocomposites of CQDs/GQDs and pristine quantum dots as sensors are presented in detail. Their applications envisage important domains dealing with the sensing of pollutant molecules. Recent advances and future perspective in the use of CQDs, GQDs, and their nanocomposites as sensors are also explored.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Dong, Yongqiang, Jianpeng Lin, Yingmei Chen, Fengfu Fu, Yuwu Chi e Guonan Chen. "Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals". Nanoscale 6, n. 13 (2014): 7410–15. http://dx.doi.org/10.1039/c4nr01482k.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia