Letteratura scientifica selezionata sul tema "Pseudocyclic electron transport"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Pseudocyclic electron transport".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Pseudocyclic electron transport"
Goetze, D. Christoper, e Robert Carpentier. "Ferredoxin–NADP+ reductase is the site of oxygen reduction in pseudocyclic electron transport". Canadian Journal of Botany 72, n. 2 (1 febbraio 1994): 256–60. http://dx.doi.org/10.1139/b94-034.
Testo completoTikhonov, A. N. "Electron transport in chloroplasts: regulation and alternative pathways of electron transfer". Биохимия 88, n. 10 (15 dicembre 2023): 1742–60. http://dx.doi.org/10.31857/s0320972523100032.
Testo completoClarke, Joanne E., e Giles N. Johnson. "In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley". Planta 212, n. 5-6 (12 aprile 2001): 808–16. http://dx.doi.org/10.1007/s004250000432.
Testo completoFurbank, RT, CLD Jenkins e MD Hatch. "C4 Photosynthesis: Quantum Requirement, C4 and Overcycling and Q-Cycle Involvement". Functional Plant Biology 17, n. 1 (1990): 1. http://dx.doi.org/10.1071/pp9900001.
Testo completoTokarz, Krzysztof M., Wojciech Makowski, Barbara Tokarz, Monika Hanula, Ewa Sitek, Ewa Muszyńska, Roman Jędrzejczyk, Rafał Banasiuk, Łukasz Chajec e Stanisław Mazur. "Can Ceylon Leadwort (Plumbago zeylanica L.) Acclimate to Lead Toxicity?—Studies of Photosynthetic Apparatus Efficiency". International Journal of Molecular Sciences 21, n. 5 (9 marzo 2020): 1866. http://dx.doi.org/10.3390/ijms21051866.
Testo completoBurlacot, Adrien. "Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness". New Phytologist, 23 ottobre 2023. http://dx.doi.org/10.1111/nph.19328.
Testo completo"Effect of methyl viologen on slow secondary fluorescence kinetics associated with photosynthetic carbon assimilation in intact isolated chloroplasts". Proceedings of the Royal Society of London. Series B. Biological Sciences 226, n. 1243 (22 novembre 1985): 237–47. http://dx.doi.org/10.1098/rspb.1985.0093.
Testo completoTesi sul tema "Pseudocyclic electron transport"
Hani, Umama. "Regulation of cyclic and pseudocyclic electron transport". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB044.
Testo completoPhotosynthesis acts as the main gateway for energy production in natural environments and relies on the electron flow via several complexes in the thylakoid membrane of photosynthetic organisms. The major flux is “linear” electron transport, which involves the transfer of electrons from water to NADP⁺, coupled with the ATP synthesis. Photosynthetic water oxidation is catalyzed by manganese cluster (Mn₄CaO₅) at photosystem II (PSII). To ensure an optimal balance between the amount of energy produced and consumed, photosynthetic organisms divert part of the harvested light energy from “linear” to “alternative” electron transport pathways. Among those pathways are cyclic and pseudocyclic electron transport around Photosystem I (PSI), which supplies extra ATP to meet metabolic demands. Moreover, specialized redox systems, called " thioredoxins " are responsible for maintaining the redox status and fast acclimation of plants to constantly fluctuating environments, which could otherwise lead to toxic levels of reactive oxygen species (ROS) production. We studied the effects of manganese (Mn) excess and deficiency on photosynthetic electron transport in the liverwort Marchantia polymorpha. We have shown that Mn homeostasis has an effect at both metabolic and photosynthetic levels. Moreover, we have studied the in vivo redox changes of P700 and PC using KLAS-NIR spectrophotometer and have shown that Mn deficiency seems to enhance cyclic electron transport (CET), that may indicate the presence of supercomplexes containing PSI and cytochrome b6f complex. The second part of this PhD focused on the redox regulation of oxygen reduction (pseudocyclic electron transport) at the PSI acceptor side. By using indirect spin trapping EPR spectroscopy, we have shown that Arabidopsis thaliana wild type plants generate more ROS in short day (SD) photoperiod than in long day (LD) photoperiod. Further, the current study highlighted the role of several players in redox regulation; including thioredoxins and several other lumenal and stromal proteins. Moreover, I explored that the transfer of reducing powers from stroma to lumen is mediated by a protein called CCDA and that reversible attachment of Trxm to the thylakoid membrane acts as the driving force for higher ROS under the SD light regime. Overall, this research establishes a strong connection between cyclic and pseudocyclic electron transport in terms of thioredoxins mediated redox regulations and also paves the way to further explore CET under different stress conditions
Capitoli di libri sul tema "Pseudocyclic electron transport"
Kruk, J., e M. Jemioła-Rzemińska. "Plastoquinol and Other Natural Membrane Prenyllipids May Form Pseudocyclic Electron Transport by Scavenging Superoxide Generated in Photosystem I". In Advanced Research on Plant Lipids, 365–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0159-4_85.
Testo completo