Indice

  1. Tesi

Letteratura scientifica selezionata sul tema "Progéniteurs corticaux"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Progéniteurs corticaux".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Tesi sul tema "Progéniteurs corticaux"

1

Nikolla, Kamela. "Role of MECP2 during early development of the primate cerebral cortex". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10342.

Testo completo
Abstract (sommario):
MECP2 (protéine 2 de liaison méthyle CpG) est un gène situé sur le chromosome Xq28 chez l'humain. MECP2 est largement connu pour être associé à deux principaux troubles neurologiques sévères : le syndrome de Rett (RTT) et le syndrome de duplication de MECP2 (MDS), caractérisés par une apparition des symptômes après la naissance. La plupart des études sur MECP2 sont concentrées sur les stades tardifs du développement cortical, et son rôle au cours du développement précoce du cortex cérébral chez l'humain et les primates non-humains reste largement méconnu. Dans la première partie de mon projet de thèse, en combinant la méthode de single-cell RNA-seq avec l'immunohistochimie, j'ai fourni une description détaillée du profil d'expression de MECP2 pendant les différents stades du développement cortical à la fois chez les primates non-humains et l'humain. Chez les primates non-humains, nous décrivons à la fois un gradient rostro-caudal de l'expression de MECP2, qui suit le gradient rostro-caudal de maturation des différentes aires corticales, et un gradient apico-basal le long de la paroi corticale en développement. Dans la deuxième partie de mon projet de thèse, je me suis intéressée aux effets de la surexpression de MECP2 dans les progéniteurs corticaux au stade du développement correspondant à la production des neurones des couches infragranulaires (couches VI-V) chez le macaque. Nous décrivons des conséquences sur les paramètres du cycle cellulaire de différents types de progéniteurs, affectant leur prolifération, leur mode de division et leur progéniture. De plus, nous avons observé des conséquences de la surexpression de MECP2 sur la dynamique de la migration radiale des nouveaux neurones et leur maturation. Ces résultats obtenus chez les primates non-humains sont complétés par des observations dans les organoïdes cérébraux humains dérivés à partir de cellules souches pluripotentes induites issues de patients RTT et de leurs contrôles isogéniques. Dans l'ensemble, ces résultats suggèrent que le niveau de MECP2 est crucial à la fois au cours du développement embryonnaire précoce, pour la production correcte de neurones corticaux, ainsi qu'aux stades plus tardifs pour leur maturation finale
MECP2 (methyl-CpG binding protein 2) is an X-linked gene located on chromosome Xq28 in humans. MECP2 is associated with two main severe neurological disorders, Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), both characterized by a postnatal onset of symptoms. While most functional studies of MECP2 have focused on later stages of cortical development, its role during early development of the cerebral cortex in humans and non-human primates remains largely unknown. In the first part of my PhD project, I implemented single-cell RNA-seq in combination with immunohistochemistry to provide a detailed description of MECP2 expression patterns and timetable in the developing cortex of both non-human primates and humans. In the non-human primate, we report a rostral-caudal gradient of increasing MECP2 expression reminiscent of the rostral-caudal maturation gradient of cortical areas as well as an apical-basal gradient in the developing cortical wall. The second part of my PhD project focused on the effects of MECP2 targeted overexpression in cortical progenitors that generate infragranular layer neurons (layers VI-V) in the macaque monkey cortex. We report consequences on cell-cycle parameters of distinct type of progenitors affecting their proliferation kinetics, mode of division and cell lineage progression. Additionally, we observed consequences of MECP2 overexpression on the dynamics of radial migration of newborn neurons and their maturation. These data obtained in the non-human primate are complemented by observations of human cerebral organoids derived from iPSCs from Rett patients and their isogenic control. Altogether, our results suggest that MECP2 levels are critical at early corticogenesis stages for the proper production rate of cortical neurons as well at later stages for their final maturation
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zaidi, Donia. "Étude des mécanismes pathogéniques dépendants des microtubules dans les progéniteurs neuronaux conduisant aux malformations corticales". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS159.pdf.

Testo completo
Abstract (sommario):
Les cellules de glie radiaire apicale (RG) sont des cellules clés du développement cortical, capables d'auto-renouvellement ou de génération neuronale, possédant un noyau restreint à la zone ventriculaire (VZ) qui migre en fonction des phases du cycle cellulaire via un phénomène nommé migration nucléaire intercinétique (MNI). Les RG ont une forme bipolaire, avec un long processus basal soutenant la migration neuronale et un court processus apical faisant face au ventricule où un cil primaire (PC), ancré à un centrosome modifié (‘corps basal’), émerge et sert de plateforme de signalisation. Des mutations génétiques peuvent altérer le fonctionnement des RG, affectant le développement cortical et conduisant à des malformations corticales. Ces malformations sont associées chez les patients à de l’épilepsie et à des déficiences intellectuelles. Il est donc important de déterminer comment les processus moléculaires et cellulaires mis en jeu au niveau des RG peuvent être perturbés par des mutations génétiques. Mon travail de thèse a porté sur l’étude de deux gènes mutés conduisant à deux malformations corticales rares. Tout d’abord, le gène codant pour la chaine lourde de la protéine motrice dynéine (DYNC1H1) a été retrouvé muté chez des patients présentant une malformation corticale complexe avec une microcéphalie (petit cerveau) et une dysgyrie (défauts de gyrifications). Lors de mon travail de thèse, j’ai étudié les RG à la mi-corticogenèse dans un modèle murin Knock-In (KI) pour ce gène, reproduisant une mutation faux sens retrouvée chez un patient, en le comparant avec un modèle murin muté pour ce même gène mais conduisant à des neuropathies périphériques. Nous avons découvert des anomalies de MNI, de cycle cellulaire et de migration neuronale. Également, des défauts d’organelles tels que les mitochondries et l’appareil de Golgi ont été identifiés dans les RG, et sont spécifiques à la mutation faux-sens conduisant à la malformation corticale. Deuxièmement, l'hétérotopie sous-corticale (SH) est une malformation caractérisée par la présence anormale de neurones dans la substance blanche. Le gène codant pour EML1 (Echinoderm microtubule associated protein like 1) a été retrouvé muté chez certains patients SH. Lorsqu’Eml1 est muté chez la souris, une proportion de RG se retrouvent en dehors de la VZ, suggérant qu’elles se détachent coté apical. Au niveau apical, des anomalies de PC et des corps basaux ont été décrits. En étudiant un nouveau modèle de souris mutant, inactivé pour Eml1, mon travail s'est concentré sur les altérations subcellulaires et cellulaires des RG afin de comprendre les mécanismes pathogéniques conduisant à leur détachement et donc à la formation de SH. Etudiant les RG en interphase, en analysant les centrosomes, j’ai déterminé que leur structure est affectée dans les cellules de patients et de souris mutante, et ces défauts sont résolus par la stabilisation des microtubules. Le recrutement de protéines aux centrosomes est altéré et la protéine centrosomale Cep170 s'est avérée être un partenaire d'interaction spécifique d’EML1, cette interaction étant perdue quand EML1 présente une mutation SH. Les centrosomes et le PC étant intimement liés au cycle cellulaire, j’ai poursuivi par l'analyse du cycle cellulaire des RG et identifié des altérations de sa cinétique à deux stades de développement. Le séquençage de l'ARN des cellules uniques a permis d'identifier des dérèglements dans l'expression des gènes du cycle cellulaire. Le détachement anormal des RG est plus massif au début du développement que plus tard, ce qui suggère que les altérations de centrosomes et du cycle cellulaire à ce stade peuvent être en amont du détachement anormal des RG. Mon travail de thèse apporte ainsi de nouveaux éléments essentiels à la compréhension des mécanismes altérés dans les progéniteurs neuronaux dans le contexte de malformations corticales rares
In mammals, cortical development is a finely regulated process that leads to the formation of a functional cortex. Apical radial glial cells (RG) are key progenitor cells du ring cortical development, capable of self-renewal or neuronal generation, with a soma restricted to the ventricular zone (VZ) in rodents. Their nucleus migrates according to the phases of the cell cycle by a process called interkinetic nuclear migration (INM). RG have a bipolar shape, with a long basal process supporting neuronal migration and a short apical process facing the ventricle where a primary cilium (PC), anchored to a modified centrosome (‘basal body’), emerges and detects molecules present in the embryonic cerebrospinal fluid. Genetic mutations can alter the function of RG, affecting cortical development and leading to cortical malformations. These malformations are associated in patients with epilepsy, intellectual disabilities and also neuropsychiatric disorders. It is therefore important to determine how the molecular and cellular processes involving RG can be disrupted by genetic mutations. Thus, my thesis work focused on the study of mutations affecting two different genes in the context of two rare cortical malformations. First, the gene encoding for the motor protein dynein heavy chain (DYNC1H1) was found mutated in patients with a complex cortical malformation associated with microcephaly (small brain) and dysgyria (gyri defects). We generated a Knock-In (KI) mouse model for this gene, reproducing a missense mutation found in a patient. During my thesis, I studied RG at mid-corticogenesis of this KI model and, by comparing it with a mouse model mutant for the same gene but leading to peripheral neuropathies, we showed RG alterations specific to the KI model. We found abnormalities in INM, cell cycle and neuronal migration. Also, defects of key organelles, such as mitochondria and Golgi apparatus were identified in progenitors and are specific in the cortical malformation KI model. Secondly, subcortical heterotopia (SH) is a cortical malformation characterized by the abnormal presence of neurons in the white matter. Mutations in the gene coding for EML1 (Echinoderm microtubule associated protein like 1) were identified in certain SH patients. When Eml1 is mutated in mice, numerous RG are found in basal positions of the cortical wall outside the VZ, suggesting that they detach apically. Within the apical process, abnormal PC formation and basal bodies were described. By studying a new mutant mouse model where Eml1 is inactivated, my work focused on subcellular and cellular alterations of RG to understand the pathogenic mechanisms leading to their detachment and thus to SH formation. In interphase RG, focusing on mechanisms upstream of PC formation, I analyzed centrosomes and determined that their structure is affected in patient and mouse mutant cells, and these defects are rescued by stabilizing microtubules. Recruitment of key centrosomal proteins is altered early in development, and the centrosomal protein Cep170 was found to be a specific interacting partner of EML1, this interaction being lost when EML1 carries a patient mutation. Because centrosomes and cilia are intimately linked to the cell cycle, I proceeded to analyze the RG cell cycle and identified alterations in cell cycle kinetics during early and mid-development. Single-cell RNA sequencing at two key developmental stages identified deregulations in cell cycle gene expression. Abnormal RG detachment appears greater in early compared to mid-development, suggesting that centrosomal and cell cycle alterations at this stage may be upstream of abnormal RG detachment. My thesis work thus brings new elements essential to the understanding of the altered mechanisms in neural progenitors related to rare cortical malformations
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Marcy, Guillaume. "Etude des spécificités transcriptionnelles et de la compétence des progéniteurs neuraux postnataux du cerveau antérieur chez la souris". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEP070/document.

Testo completo
Abstract (sommario):
Lors du développement, la coordination d’évènements moléculaires et cellulaires mène à la production du cortex qui orchestre les fonctions sensori-motrices et cognitives. Son développement s’effectue par étapes : les cellules gliales radiaires (RGs) – les cellules souches neurales (NSCs) du cerveau en développement – et les cellules progénitrices de la zone ventriculaire (VZ) et de la zone sous ventriculaire (SVZ) génèrent séquentiellement des vagues distinctes de nouveaux neurones qui formeront les différentes couches corticales. Autour de la naissance, les RGs changent de devenir et produisent des cellules gliales. Cependant, une fraction persiste tout au long de la vie dans la SVZ qui borde le ventricule, perdant au passage leur morphologie radiale. Ces NSCs produisent ensuite les différents sous types d’interneurones du bulbe olfactif ainsi que des cellules gliales en fonction de leur origine spatiale dans la SVZ. Ces observations soulèvent d’importantes questions non résolues sur 1) le codage transcriptionnel régulant la régionalisation de la SVZ, 2) le potentiel des NSCs postnatales dans la réparation cérébrale, et 3) le lignage et les spécificités transcriptionnelles entre les NSCs et leur descendants. Mon travail de doctorat repose sur une étude transcriptionnelle des domaines de la SVZ postnatale. Celle-ci soulignait le fort degré d’hétérogénéité des NSCs et progéniteurs et identifiait des régulateurs transcriptionnels clés soutenant la régionalisation. J’ai développé des approches bio-informatiques pour explorer ces données et connecter l’expression de facteurs de transcription (TFs) avec la genèse régionale de lignages neuraux distincts. J’ai ensuite développé un modèle d’ablation ciblée pour étudier le potentiel régénératif des progéniteurs postnataux dans divers contextes. Finalement, j’ai participé au développement d’une procédure pour explorer et comparer des progéniteurs pré et postnataux à l’échelle de la cellule unique. Objectif 1 : Des expériences de transcriptomique et de cartographie ont été réalisées pour étudier la relation entre l’expression régionale de TFs par les NSCs et l’acquisition de leur devenir. Nos résultats suggèrent un engagement précoce des NSCs à produire des types cellulaires définis selon leur localisation spatiale dans la SVZ et identifient HOPX comme un marqueur d’une sous population biaisé à générer des astrocytes. Objectif 2 : J’ai mis au point un modèle de lésion corticale qui permet l’ablation ciblée de neurones de couches corticales définies pour étudier la capacité régénérative et la spécification appropriée des progéniteurs postnataux. Une analyse quantitative des régions adjacentes, incluant la région dorsale de la SVZ, a révélé une réponse transitoire de progéniteurs définis. Objectif 3 : Nous avons développé la lignée de souris transgénique Neurog2CreERT2Ai14, qui permet le marquage de cohortes de progéniteurs glutamatergiques et de leurs descendants. Nous avons montré qu’une large fraction de ces progéniteurs persiste dans le cerveau postnatal après la fermeture de neurogénèse corticale. Ils ne s’accumulent pas pendant le développement embryonnaire mais sont produits par des RGs qui persistent après la naissance dans la SVZ et qui continuent de générer des neurones corticaux, bien que l’efficacité soit faible. Le séquençage d’ARN sur cellule unique a révélé une dérégulation transcriptionnelle qui corrèle avec le déclin progressif observé in vivo de la neurogénèse corticale. Ensemble, ces résultats soulignent le potentiel des études transcriptomiques à résoudre mais aussi à soulever des questions fondamentales comme les changements trancriptionnels intervenant dans une population de progéniteurs au cours du temps et participant aux changements de leur destinée. Cette connaissance sera la clé du développement d’approches novatrices pour recruter et promouvoir la génération de types cellulaires spécifiques, incluant les sous-types neuronaux dans un contexte pathologique
During development, a remarkable coordination of molecular and cellular events leads to the generation of the cortex, which orchestrates most sensorimotor and cognitive functions. Cortex development occurs in a stepwise manner: radial glia cells (RGs) - the neural stem cells (NSCs) of the developing brain - and progenitor cells from the ventricular zone (VZ) and the subventricular zone (SVZ) sequentially give rise to distinct waves of nascent neurons that form cortical layers in an inside-out manner. Around birth, RGs switch fate to produce glial cells. A fraction of neurogenic RGs that lose their radial morphology however persists throughout postnatal life in the subventricular zone that lines the lateral ventricles. These NSCs give rise to different subtypes of olfactory bulb interneurons and glial cells, according to their spatial origin and location within the postnatal SVZ. These observations raise important unresolved questions on 1) the transcriptional coding of postnatal SVZ regionalization, 2) the potential of postnatal NSCs for cellular regeneration and forebrain repair, and 3) the lineage relationship and transcriptional specificities of postnatal NSCs and of their progenies. My PhD work built upon a previously published comparative transcriptional study of defined microdomains of the postnatal SVZ. This study highlighted a high degree of transcriptional heterogeneity within NSCs and progenitors and revealed transcriptional regulators as major hallmarks sustaining postnatal SVZ regionalization. I developed bioinformatics approaches to explore these datasets further and relate expression of defined transcription factors (TFs) to the regional generation of distinct neural lineages. I then developed a model of targeted ablation that can be used to investigate the regenerative potential of postnatal progenitors in various contexts. Finally, I participated to the development of a pipeline for exploring and comparing select populations of pre- and postnatal progenitors at the single cell level. Objective 1: Transcriptomic as well as fate mapping were used to investigate the relationship between regional expression of TFs by NSCs and their acquisition of distinct neural lineage fates. Our results supported an early priming of NSCs to produce defined cell types depending of their spatial location in the SVZ and identified HOPX as a marker of a subpopulation biased to generate astrocytes. Objective 2: I established a cortical lesion model, which allowed the targeted ablation of neurons of defined cortical layers to investigate the regenerative capacity and appropriate specification of postnatal cortical progenitors. Quantitative assessment of surrounding brain regions, including the dorsal SVZ, revealed a transient response of defined progenitor populations. Objective 3: We developed a transgenic mouse line, i.e. Neurog2CreERT2Ai14, which allowed the conditional labeling of birth-dated cohorts of glutamatergic progenitors and their progeny. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal RGs that persist after birth in the dorsal SVZ and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing revealed a dysregulation of transcriptional programs, which correlates with the gradual decline in cortical neurogenesis observed in vivo. Altogether, these data highlight the potential of transcriptomic studies to unravel but also to approach fundamental questions such as transcriptional changes occurring in a population of progenitors over time and participating to changes in their fate potential. This knowledge will be key in developing innovative approaches to recruit and promote the generation of selected cell types, including neuronal subtypes in pathologies
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Bizzotto, Sara. "Eml1 in radial glial progenitors during cortical development : the neurodevelopmental role of a protein mutated in subcortical heterotopia in mouse and human". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066118.

Testo completo
Abstract (sommario):
Le développement du cortex cérébral résulte de processus de prolifération, neurogenèse, migration et différenciation cellulaire qui sont contrôlés génétiquement. Les malformations corticales qui résultent d'anomalies de ces processus sont associées à l'épilepsie et la déficience intellectuelle. Nous avons étudié la souris mutante HeCo (heterotopic cortex), qui présente une hétérotopie sous-cortical bilatérale (neurones présents dans la substance blanche) et nous avons identifié la présence d'une mutation sur le gène Eml1 (Echinoderm Microtubule-associated protein-Like 1). De plus, des mutations du gène EML1 ont été identifiées chez des patients atteints d'une forme sévère et rare d'hétérotopie. Dans le cerveau embryonnaire des souris HeCo, des progéniteurs ont été identifiés en dehors de la zone de prolifération, ce qui représente une nouvelle cause de cette malformation. Nous avons étudié la fonction d'Eml1 dans les progéniteurs de la glie radiaire, qui sont clés au cours de la corticogenèse. Nous avons montré qu'Eml1 se localise dans le fuseau mitotique où elle est susceptible de réguler la dynamique des microtubules. Nos données suggèrent qu'Eml1 peut jouer un rôle dans la régulation de la longueur du fuseau puisque celle-ci est perturbée dans les cellules de la glie radiaire chez la souris HeCo. Ceci pourrait représenter la cause primaire de leur ectopie. Nous avons analysé le nombre et la taille des cellules en métaphase dans la partie apicale de la zone ventriculaire où ont lieu les mitoses. Nous proposons ici de nouveaux mécanismes qui régissent l'organisation des progéniteurs dans la zone ventriculaire au cours du développement cortical normal et pathologique
The cerebral cortex develops through genetically regulated processes of cellular proliferation, neurogenesis, migration and differentiation. Cortical malformations represent a spectrum of heterogeneous disorders due to abnormalities in these steps, and associated with epilepsy and intellectual disability. We studied the HeCo (heterotopic cortex) mutant mouse, which exhibits bilateral subcortical band heterotopia (SBH), characterized by many aberrantly positioned neurons in the white matter. We found that Eml1 (Echinoderm Microtubule-associated protein-Like 1) is mutated in these mice. Screening of EML1 in heterotopia patients identified mutations giving rise to a severe and rare form of atypical heterotopia. In HeCo embryonic brains, progenitors were identified outside the normal proliferative ventricular zone (VZ), representing a novel cause of this disorder. We studied Eml1 function in radial glial progenitors (RGCs), which are important during corticogenesis generating other subtypes of progenitors and post-mitotic neurons, and serving as guides for migrating neurons. We showed that Eml1 localizes to the mitotic spindle where it might regulate microtubule dynamics. My data suggest a role in the establishment of the steady state metaphase spindle length. Indeed, HeCo RGCs in the VZ showed a perturbed spindle length during corticogenesis, and this may represent one of the primary mechanisms leading to abnormal progenitor behavior. I also analyzed cell number and metaphase cell size at the apical side of the VZ, where mitosis occurs. I thus propose new mechanisms governing normal and pathological VZ progenitor organization and function during cortical development
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Desmaris, Elodie. "Etude du rôle des facteurs de transcription Dmrt3 et Dmrt5 dans le développement cortical: Dmrt3 et Dmrt5 maintiennent l'identité corticale dans les progéniteurs du télencéphale dorsal au cours du développement". Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/309310.

Testo completo
Abstract (sommario):
La spécification de l’identité ventrale ou dorsale des progéniteurs au cours du développement du télencéphale est la première étape cruciale du développement du cortex cérébral. Les gènes doublesex and mab-3 related (Dmrt) Dmrt3 et Dmrt5 codent pour des facteurs de transcription à doigt de Zinc. Ces gènes sont coexprimés selon un gradient fort caudomédialement à plus faible rostrolatéralement dans le primordium du cortex cérébral. Nous avons d’abord démontré qu’ils étaient tous deux nécessaires pour la formation normale de l’hème corticale, l’hippocampe et le néocortex caudomédian. Nous avons plus récemment adressé le rôle de Dmrt3 et Dmrt5 dans le contrôle de la régionalisation dorsale/ventrale du télencéphale chez la souris, en comparant les phénotypes d’embryons simple knock out (KO) aux double KO (dKO), et par une expression ectopique de Dmrt5 dans le télencéphale ventral. Nous avons mis en évidence que DMRT3 et DMRT5 agissent comme des régulateurs critiques de l’identité dorsoventrale des cellules progénitrices en réprimant les régulateurs ventralisants. Les régulateurs transcriptionnels précoces de la destinée ventrale exprimés dans la partie dorsale de l’éminence ganglionnaire latérale tel que Gsx2 sont régulés positivement dans le télencéphale dorsal embryons dKO et régulés négativement lorsque les progéniteurs du télencéphale ventral expriment Dmrt5 de manière ectopique. La surexpression conditionnelle de Dmrt5 au sein du télencéphale entier génère un profil d’expression et des défauts très similaires à ceux observés lors d’une activité Gsx2 diminuée. De plus, les embryons Emx2 ;Dmrt5 double KO montrent un phénotype similaire à celui des embryons dKO. DMRT3, DMRT5 et le facteur de transcription à homéobox EMX2 peuvent se lier à un enhancer spécifique du télencéphale ventral dans le locus Gsx2. Ensemble, nos résultats montrent des fonctions coopératives de DMRT3, DMRT5 et EMX2 dans la distinction entre identité dorsale et ventrale au sein du télencéphale.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bizzotto, Sara. "Eml1 in radial glial progenitors during cortical development : the neurodevelopmental role of a protein mutated in subcortical heterotopia in mouse and human". Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066118.

Testo completo
Abstract (sommario):
Le développement du cortex cérébral résulte de processus de prolifération, neurogenèse, migration et différenciation cellulaire qui sont contrôlés génétiquement. Les malformations corticales qui résultent d'anomalies de ces processus sont associées à l'épilepsie et la déficience intellectuelle. Nous avons étudié la souris mutante HeCo (heterotopic cortex), qui présente une hétérotopie sous-cortical bilatérale (neurones présents dans la substance blanche) et nous avons identifié la présence d'une mutation sur le gène Eml1 (Echinoderm Microtubule-associated protein-Like 1). De plus, des mutations du gène EML1 ont été identifiées chez des patients atteints d'une forme sévère et rare d'hétérotopie. Dans le cerveau embryonnaire des souris HeCo, des progéniteurs ont été identifiés en dehors de la zone de prolifération, ce qui représente une nouvelle cause de cette malformation. Nous avons étudié la fonction d'Eml1 dans les progéniteurs de la glie radiaire, qui sont clés au cours de la corticogenèse. Nous avons montré qu'Eml1 se localise dans le fuseau mitotique où elle est susceptible de réguler la dynamique des microtubules. Nos données suggèrent qu'Eml1 peut jouer un rôle dans la régulation de la longueur du fuseau puisque celle-ci est perturbée dans les cellules de la glie radiaire chez la souris HeCo. Ceci pourrait représenter la cause primaire de leur ectopie. Nous avons analysé le nombre et la taille des cellules en métaphase dans la partie apicale de la zone ventriculaire où ont lieu les mitoses. Nous proposons ici de nouveaux mécanismes qui régissent l'organisation des progéniteurs dans la zone ventriculaire au cours du développement cortical normal et pathologique
The cerebral cortex develops through genetically regulated processes of cellular proliferation, neurogenesis, migration and differentiation. Cortical malformations represent a spectrum of heterogeneous disorders due to abnormalities in these steps, and associated with epilepsy and intellectual disability. We studied the HeCo (heterotopic cortex) mutant mouse, which exhibits bilateral subcortical band heterotopia (SBH), characterized by many aberrantly positioned neurons in the white matter. We found that Eml1 (Echinoderm Microtubule-associated protein-Like 1) is mutated in these mice. Screening of EML1 in heterotopia patients identified mutations giving rise to a severe and rare form of atypical heterotopia. In HeCo embryonic brains, progenitors were identified outside the normal proliferative ventricular zone (VZ), representing a novel cause of this disorder. We studied Eml1 function in radial glial progenitors (RGCs), which are important during corticogenesis generating other subtypes of progenitors and post-mitotic neurons, and serving as guides for migrating neurons. We showed that Eml1 localizes to the mitotic spindle where it might regulate microtubule dynamics. My data suggest a role in the establishment of the steady state metaphase spindle length. Indeed, HeCo RGCs in the VZ showed a perturbed spindle length during corticogenesis, and this may represent one of the primary mechanisms leading to abnormal progenitor behavior. I also analyzed cell number and metaphase cell size at the apical side of the VZ, where mitosis occurs. I thus propose new mechanisms governing normal and pathological VZ progenitor organization and function during cortical development
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Penisson, Maxime. "Mécanismes de LIS1 dans les progéniteurs neuraux contribuant aux malformations de développement du cortex". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS415.

Testo completo
Abstract (sommario):
Les malformations du développement du cortex sont associées à des troubles de la prolifération des progéniteurs et de la migration neuronale. Les glies radiaires basales (bRGs), un type de progéniteur, sont limités dans les espèces lissencéphaliques mais abondants dans les cerveaux gyrencéphaliques. Le gène LIS1, codant pour un régulateur de la dynéine, est muté dans la lissencéphalie humaine. LIS1 a un rôle dans la division cellulaire et la migration neuronale. Dans cette étude, nous avons généré des cellules bRG-like dans le cerveau embryonnaire murin, pour étudier le rôle de Lis1 dans leur production. Ceci fut réalisé par électroporation in utero du gène hominoïde-spécifique TBC1D3 au jour embryonnaire (E) 14.5. Nous avons confirmé que l’expression de TBC1D3 dans des cerveaux WT induit un grand nombre de cellules bRG-like basales. Puis, nous avons étudié la production des bRGs-like dans des cerveaux murins hétérozygotes pour Lis1. Nos résultats novateurs montrent que la déplétion de Lis1 à partir de E9.5 empêche la production de cellules bRG-like induites par TBC1D3. La déplétion de Lis1 change l’orientation du fuseau mitotique, accroit le nombre de mitoses abventriculaires et altère l’expression de N-Cadhérine. Nous concluons que la perturbation du dosage de Lis1 pourrait perturber le nombre et la position corrects des progéniteurs, contribuant à la pathogenèse de Lis1
Human cortical malformations are associated with progenitor proliferation and neuronal migration abnormalities. Basal radial glia (bRGs), a type of progenitor cells, are limited in lissencephalic species (e.g. the mouse) but abundant in gyrencephalic brains. The LIS1 gene coding for a dynein regulator, is mutated in human lissencephaly, associated also in some cases with microcephaly. LIS1 was shown to be important during cell division and neuronal migration. Here, we generated bRG-like cells in the mouse embryonic brain, investigating the role of Lis1 in their formation. This was achieved by in utero electroporation of a hominoid-specific gene TBC1D3 at mouse embryonic day (E) 14.5. We first confirmed that TBC1D3 overexpression in WT brain generates numerous Pax6+ bRG-like cells that are basally localized. Second, we assessed the formation of these cells in heterozygote Lis1 mutant brains. Our novel results show that Lis1 depletion in the forebrain from E9.5 prevented subsequent TBC1D3-induced bRG-like cell amplification. Lis1 depletion changed mitotic spindle orientations at the ventricular surface, increased the proportion of abventricular mitoses, and altered N-Cadherin expression, altering TBC1D3 function. We conclude that perturbation of Lis1/LIS1 dosage is likely to be detrimental for appropriate progenitor number and position, contributing to lissencephaly pathogenesis
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia