Letteratura scientifica selezionata sul tema "Probability learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Probability learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Probability learning"
SAEKI, Daisuke. "Probability learning in golden hamsters". Japanese Journal of Animal Psychology 49, n. 1 (1999): 41–47. http://dx.doi.org/10.2502/janip.49.41.
Testo completoGroth, Randall E., Jennifer A. Bergner e Jathan W. Austin. "Dimensions of Learning Probability Vocabulary". Journal for Research in Mathematics Education 51, n. 1 (gennaio 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.2019.0008.
Testo completoGroth, Randall E., Jennifer A. Bergner e Jathan W. Austin. "Dimensions of Learning Probability Vocabulary". Journal for Research in Mathematics Education 51, n. 1 (gennaio 2020): 75–104. http://dx.doi.org/10.5951/jresematheduc.51.1.0075.
Testo completoRivas, Javier. "Probability matching and reinforcement learning". Journal of Mathematical Economics 49, n. 1 (gennaio 2013): 17–21. http://dx.doi.org/10.1016/j.jmateco.2012.09.004.
Testo completoWest, Bruce J. "Fractal Probability Measures of Learning". Methods 24, n. 4 (agosto 2001): 395–402. http://dx.doi.org/10.1006/meth.2001.1208.
Testo completoJiang, Xiaolei. "Conditional Probability in Machine Learning". Journal of Education and Educational Research 4, n. 2 (20 luglio 2023): 31–33. http://dx.doi.org/10.54097/jeer.v4i2.10647.
Testo completoMalley, J. D., J. Kruppa, A. Dasgupta, K. G. Malley e A. Ziegler. "Probability Machines". Methods of Information in Medicine 51, n. 01 (2012): 74–81. http://dx.doi.org/10.3414/me00-01-0052.
Testo completoDawson, Michael R. W. "Probability Learning by Perceptrons and People". Comparative Cognition & Behavior Reviews 15 (2022): 1–188. http://dx.doi.org/10.3819/ccbr.2019.140011.
Testo completoHIRASAWA, Kotaro, Masaaki HARADA, Masanao OHBAYASHI, Juuichi MURATA e Jinglu HU. "Probability and Possibility Automaton Learning Network". IEEJ Transactions on Industry Applications 118, n. 3 (1998): 291–99. http://dx.doi.org/10.1541/ieejias.118.291.
Testo completoGroth, Randall E., Jaime Butler e Delmar Nelson. "Overcoming challenges in learning probability vocabulary". Teaching Statistics 38, n. 3 (26 maggio 2016): 102–7. http://dx.doi.org/10.1111/test.12109.
Testo completoTesi sul tema "Probability learning"
Gozenman, Filiz. "Interaction Of Probability Learning And Working Memory". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614535/index.pdf.
Testo completoRYSZ, TERI. "METACOGNITION IN LEARNING ELEMENTARY PROBABILITY AND STATISTICS". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1099248340.
Testo completoBouchacourt, Diane. "Task-oriented learning of structured probability distributions". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:0665495b-afbb-483b-8bdf-cbc6ae5baeff.
Testo completoLi, Chengtao Ph D. Massachusetts Institute of Technology. "Diversity-inducing probability measures for machine learning". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121724.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 163-176).
Subset selection problems arise in machine learning within kernel approximation, experimental design, and numerous other applications. In such applications, one often seeks to select diverse subsets of items to represent the population. One way to select such diverse subsets is to sample according to Diversity-Inducing Probability Measures (DIPMs) that assign higher probabilities to more diverse subsets. DIPMs underlie several recent breakthroughs in mathematics and theoretical computer science, but their power has not yet been explored for machine learning. In this thesis, we investigate DIPMs, their mathematical properties, sampling algorithms, and applications. Perhaps the best known instance of a DIPM is a Determinantal Point Process (DPP). DPPs originally arose in quantum physics, and are known to have deep relations to linear algebra, combinatorics, and geometry. We explore applications of DPPs to kernel matrix approximation and kernel ridge regression.
In these applications, DPPs deliver strong approximation guarantees and obtain superior performance compared to existing methods. We further develop an MCMC sampling algorithm accelerated by Gauss-type quadratures for DPPs. The algorithm runs several orders of magnitude faster than the existing ones. DPPs lie in a larger class of DIPMs called Strongly Rayleigh (SR) Measures. Instances of SR measures display a strong negative dependence property known as negative association, and as such can be used to model subset diversity. We study mathematical properties of SR measures, and construct the first provably fast-mixing Markov chain that samples from general SR measures. As a special case, we consider an SR measure called Dual Volume Sampling (DVS), for which we present the first poly-time sampling algorithm.
While all considered distributions over subsets are unconstrained, those of interest in the real world usually come with constraints due to prior knowledge, resource limitations or personal preferences. Hence we investigate sampling from constrained versions of DIPMs. Specifically, we consider DIPMs with cardinality constraints and matroid base constraints and construct poly-time approximate sampling algorithms for them. Such sampling algorithms will enable practical uses of constrained DIPMs in real world.
by Chengtao Li.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Hunt, Gareth David. "Reinforcement Learning for Low Probability High Impact Risks". Thesis, Curtin University, 2019. http://hdl.handle.net/20.500.11937/77106.
Testo completoSłowiński, Witold. "Autonomous learning of domain models from probability distribution clusters". Thesis, University of Aberdeen, 2014. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=211059.
Testo completoBenson, Carol Trinko Jones Graham A. "Assessing students' thinking in modeling probability contexts". Normal, Ill. Illinois State University, 2000. http://wwwlib.umi.com/cr/ilstu/fullcit?p9986725.
Testo completoTitle from title page screen, viewed May 11, 2006. Dissertation Committee: Graham A. Jones (chair), Kenneth N. Berk, Patricia Klass, Cynthia W. Langrall, Edward S. Mooney. Includes bibliographical references (leaves 115-124) and abstract. Also available in print.
Rast, Jeanne D. "A Comparison of Learning Subjective and Traditional Probability in Middle Grades". Digital Archive @ GSU, 2005. http://digitalarchive.gsu.edu/msit_diss/4.
Testo completoLindsay, David George. "Machine learning techniques for probability forecasting and their practical evaluations". Thesis, Royal Holloway, University of London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445274.
Testo completoKornfeld, Sarah. "Predicting Default Probability in Credit Risk using Machine Learning Algorithms". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275656.
Testo completoDenna uppsats har undersökt internt utvecklade modeller för att estimera sannolikheten för utebliven betalning (PD) inom kreditrisk. Samtidigt som nya regelverk sätter restriktioner på metoder för modellering av kreditrisk och i viss mån hämmar utvecklingen av riskmätning, utvecklas samtidigt mer avancerade metoder inom maskinlärning för riskmätning. Således har avvägningen mellan strängare regelverk av internt utvecklade modeller och framsteg i dataanalys undersökts genom jämförelse av modellprestanda för referens metoden logistisk regression för uppskattning av PD med maskininlärningsteknikerna beslutsträd, Random Forest, Gradient Boosting och artificiella neurala nätverk (ANN). Dataunderlaget kommer från SEB och består utav 45 variabler och 24 635 observationer. När maskininlärningsteknikerna blir mer komplexa för att gynna förbättrad prestanda är det ofta på bekostnad av modellens tolkbarhet. En undersökande analys gjordes därför med målet att mäta förklarningsvariablers betydelse i maskininlärningsteknikerna. Resultaten från den undersökande analysen kommer att jämföras med resultat från etablerade metoder som mäter variabelsignifikans. Resultatet av studien visar att den logistiska regressionen presterade bättre än maskininlärningsteknikerna baserat på prestandamåttet AUC som mätte 0.906. Resultatet from den undersökande analysen för förklarningsvariablers betydelse ökade tolkbarheten för maskininlärningsteknikerna. Resultatet blev även validerat med utkomsten av de etablerade metoderna för att mäta variabelsignifikans.
Libri sul tema "Probability learning"
Batanero, Carmen, Egan J. Chernoff, Joachim Engel, Hollylynne S. Lee e Ernesto Sánchez. Research on Teaching and Learning Probability. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31625-3.
Testo completoDasGupta, Anirban. Probability for Statistics and Machine Learning. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9634-3.
Testo completoAggarwal, Charu C. Probability and Statistics for Machine Learning. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5.
Testo completoEgan, J. Chernoff, Engel Joachim, Lee Hollylynne S e Sánchez Ernesto, a cura di. Research on Teaching and Learning Probability. Cham: Springer, 2016.
Cerca il testo completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9.
Testo completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6.
Testo completoUnpingco, José. Python for Probability, Statistics, and Machine Learning. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3.
Testo completoPowell, Warren B. Optimal learning. Hoboken, New Jersey: Wiley, 2012.
Cerca il testo completoPeck, Roxy. Statistics: Learning from data. Australia: Brooks/Cole, Cengage Learning, 2014.
Cerca il testo completoKnez, Igor. To know what to know before knowing: Acquisition of functional rules in probabilistic ecologies. Uppsala: Uppsala University, 1992.
Cerca il testo completoCapitoli di libri sul tema "Probability learning"
Glenberg, Arthur M., e Matthew E. Andrzejewski. "Probability". In Learning From Data, 105–19. 4a ed. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003025405-6.
Testo completoZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. "Posterior Probability". In Encyclopedia of Machine Learning, 780. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_648.
Testo completoZeugmann, Thomas, Pascal Poupart, James Kennedy, Xin Jin, Jiawei Han, Lorenza Saitta, Michele Sebag et al. "Prior Probability". In Encyclopedia of Machine Learning, 782. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_658.
Testo completoKumar Singh, Bikesh, e G. R. Sinha. "Probability Theory". In Machine Learning in Healthcare, 23–33. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003097808-2.
Testo completoUnpingco, José. "Probability". In Python for Probability, Statistics, and Machine Learning, 35–100. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30717-6_2.
Testo completoUnpingco, José. "Probability". In Python for Probability, Statistics, and Machine Learning, 39–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18545-9_2.
Testo completoUnpingco, José. "Probability". In Python for Probability, Statistics, and Machine Learning, 47–134. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04648-3_2.
Testo completoFaul, A. C. "Probability Theory". In A Concise Introduction to Machine Learning, 7–61. Boca Raton, Florida : CRC Press, [2019] | Series: Chapman & Hall/CRC machine learning & pattern recognition: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781351204750-2.
Testo completoAggarwal, Charu C. "Probability Distributions". In Probability and Statistics for Machine Learning, 127–90. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5_4.
Testo completoGhatak, Abhijit. "Probability and Distributions". In Machine Learning with R, 31–56. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6808-9_2.
Testo completoAtti di convegni sul tema "Probability learning"
Temlyakov, V. N. "Optimal estimators in learning theory". In Approximation and Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.
Testo completoNeville, Jennifer, David Jensen, Lisa Friedland e Michael Hay. "Learning relational probability trees". In the ninth ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/956750.956830.
Testo completoArieli, Itai, Yakov Babichenko e Manuel Mueller-Frank. "Naive Learning Through Probability Matching". In EC '19: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3328526.3329601.
Testo completoSánchez, Emesta, Sibel Kazak e Egan J. Chernoff. "Teaching and Learning of Probability". In The 14th International Congress on Mathematical Education. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811287152_0035.
Testo completoHa, Ming-hu, Zhi-fang Feng, Er-ling Du e Yun-chao Bai. "Further Discussion on Quasi-Probability". In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258542.
Testo completoBurgos, María, María Del Mar López-Martín e Nicolás Tizón-Escamilla. "ALGEBRAIC REASONING IN PROBABILITY TASKS". In 14th International Conference on Education and New Learning Technologies. IATED, 2022. http://dx.doi.org/10.21125/edulearn.2022.0777.
Testo completoHerlau, Tue. "Active learning of causal probability trees". In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2022. http://dx.doi.org/10.1109/icmla55696.2022.00193.
Testo completoEugênio, Robson, Carlos Monteiro, Liliane Carvalho, José Roberto Costa Jr. e Karen François. "MATHEMATICS TEACHERS LEARNING ABOUT PROBABILITY LITERACY". In 14th International Technology, Education and Development Conference. IATED, 2020. http://dx.doi.org/10.21125/inted.2020.0272.
Testo completoStruski, Łukasz, Adam Pardyl, Jacek Tabor e Bartosz Zieliński. "ProPML: Probability Partial Multi-label Learning". In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023. http://dx.doi.org/10.1109/dsaa60987.2023.10302620.
Testo completoRamishetty, Sravani, e Abolfazl Hashemi. "High Probability Guarantees For Federated Learning". In 2023 59th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2023. http://dx.doi.org/10.1109/allerton58177.2023.10313468.
Testo completoRapporti di organizzazioni sul tema "Probability learning"
Shute, Valerie J., e Lisa A. Gawlick-Grendell. An Experimental Approach to Teaching and Learning Probability: Stat Lady. Fort Belvoir, VA: Defense Technical Information Center, aprile 1996. http://dx.doi.org/10.21236/ada316969.
Testo completoIlyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, dicembre 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.
Testo completoKriegel, Francesco. Learning description logic axioms from discrete probability distributions over description graphs (Extended Version). Technische Universität Dresden, 2018. http://dx.doi.org/10.25368/2022.247.
Testo completoKriegel, Francesco. Learning General Concept Inclusions in Probabilistic Description Logics. Technische Universität Dresden, 2015. http://dx.doi.org/10.25368/2022.220.
Testo completoGribok, Andrei V., Kevin P. Chen e Qirui Wang. Machine-Learning Enabled Evaluation of Probability of Piping Degradation In Secondary Systems of Nuclear Power Plants. Office of Scientific and Technical Information (OSTI), maggio 2020. http://dx.doi.org/10.2172/1634815.
Testo completode Luis, Mercedes, Emilio Rodríguez e Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, settembre 2023. http://dx.doi.org/10.53479/33560.
Testo completoDinarte, Lelys, Pablo Egaña del Sol e Claudia Martínez. When Emotion Regulation Matters: The Efficacy of Socio-Emotional Learning to Address School-Based Violence in Central America. Inter-American Development Bank, marzo 2024. http://dx.doi.org/10.18235/0012854.
Testo completoMoreno Pérez, Carlos, e Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, novembre 2022. http://dx.doi.org/10.53479/23646.
Testo completoRobson, Jennifer. The Canada Learning Bond, financial capability and tax-filing: Results from an online survey of low and modest income parents. SEED Winnipeg/Carleton University Arthur Kroeger College of Public Affairs, marzo 2022. http://dx.doi.org/10.22215/clb20220301.
Testo completoSchiefelbein, Ernesto, Paulina Schiefelbein e Laurence Wolff. Cost-Effectiveness of Education Policies in Latin America: A Survey of Expert Opinion. Inter-American Development Bank, dicembre 1998. http://dx.doi.org/10.18235/0008789.
Testo completo