Letteratura scientifica selezionata sul tema "Probabilistic μ-Analysis"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Probabilistic μ-Analysis".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Probabilistic μ-Analysis"
Chakraborty, Uday Kumar, Kalyanmoy Deb e Mandira Chakraborty. "Analysis of Selection Algorithms: A Markov Chain Approach". Evolutionary Computation 4, n. 2 (giugno 1996): 133–67. http://dx.doi.org/10.1162/evco.1996.4.2.133.
Testo completoField, R. V., P. G. Voulgaris e L. A. Bergman. "Methods to Compute Probabilistic Measures of Robustness for Structural Systems". Journal of Vibration and Control 2, n. 4 (ottobre 1996): 447–63. http://dx.doi.org/10.1177/107754639600200405.
Testo completoPinus, B. I., I. G. Korneeva e V. D. Balheeva. "Fatigue life of bending reinforced concrete elements with fibre-reinforced matrices". Journal «Izvestiya vuzov. Investitsiyi. Stroyitelstvo. Nedvizhimost» 12, n. 3 (2022): 362–67. http://dx.doi.org/10.21285/2227-2917-2022-3-362-367.
Testo completoMussardo, Giuseppe, e André LeClair. "Randomness of Möbius coefficients and Brownian motion: growth of the Mertens function and the Riemann hypothesis". Journal of Statistical Mechanics: Theory and Experiment 2021, n. 11 (1 novembre 2021): 113106. http://dx.doi.org/10.1088/1742-5468/ac22fb.
Testo completoGvozdarev, Aleksey, e Pavel Patralov. "PROBABILISTIC ANALYSIS OF GENERALISED STATISTIC MODEL FOR MULTIPATH CHANNEL OF SIMO SISTEMS WITH FADING AND CORRELATED SHADOWING". Informatics and Automation 20, n. 3 (28 maggio 2021): 727–49. http://dx.doi.org/10.15622/ia.2021.3.8.
Testo completoVolkov, Serhiy, Yuliia Simonova, Anton Korol, Yevgen Podkopayev, Oleksiy Kayun e Oleksandr Tkachuk. "STRUCTURING EXPERIMENTAL DATA ON THE PERFORMANCE OF ARCH SUPPORTS FOR PROBABILISTIC ASSESSMENT OF THE STATE OF RETRACTABLE DRIFTS". JOURNAL of Donetsk Mining Institute, n. 1 (2022): 16–31. http://dx.doi.org/10.31474/1999-981x-2022-1-16-31.
Testo completoFalcoz, Alexandre, Daniel Alazard e Christelle Pittet. "Probabilistic μ-analysis for system performances assessment. * *This work has been done in the scope of a CNES R&D activity cojointly funded by Airbus Defence and Space and CNES, Toulouse." IFAC-PapersOnLine 50, n. 1 (luglio 2017): 399–404. http://dx.doi.org/10.1016/j.ifacol.2017.08.181.
Testo completoOstermeyer, Georg-Peter, Michael Müller, Stephan Brumme e Tarin Srisupattarawanit. "Stability Analysis with an NVH Minimal Model for Brakes under Consideration of Polymorphic Uncertainty of Friction". Vibration 2, n. 1 (6 marzo 2019): 135–56. http://dx.doi.org/10.3390/vibration2010009.
Testo completoLiu, Yuqi, Xuehua Li e Huan Li. "N-Widths of Multivariate Sobolev Spaces with Common Smoothness in Probabilistic and Average Settings in the Sq Norm". Axioms 12, n. 7 (17 luglio 2023): 698. http://dx.doi.org/10.3390/axioms12070698.
Testo completoLiu, Yuqi, Huan Li e Xuehua Li. "Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure". Axioms 12, n. 9 (22 agosto 2023): 804. http://dx.doi.org/10.3390/axioms12090804.
Testo completoTesi sul tema "Probabilistic μ-Analysis"
Somers, Franca Maria Emma. "Nouveaux outils probabilistes pour améliorer la vérification et la validation des systèmes de contrôle spatiaux". Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0054.
Testo completoCurrent verification and validation (V&V) activities in aerospace industry mostly rely on time-consuming simulation-based tools. These classical Monte Carlo approaches have been widely used for decades to assess performance of Guidance, Navigation and Control (GNC) algorithms and Attitude and Orbit Control Systems (AOCS) containing multiple uncertain parameters. They are able to quantify the probability of sufficiently frequent phenomena, but they may fail in detecting rare but critical combinations of parameters. As the complexity of modern space systems increases, this limitation plays an ever more important role. In recent years, model-based worst-case analysis methods have reached a good level of maturity. Without the need of simulations, these tools can fully explore the space of all possible combinations of uncertain parameters and provide guaranteed mathematical bounds on robust stability margins and worst-case performance levels. Problematic parameter configurations, identified using these methods, can be used to guide the final Monte Carlo campaigns, thereby drastically shortening the standard V&V process. A limitation of classical model-based worst-case analysis methods is that they assume the uncertain parameters can take any value within a given range with equal probability. The probability of occurrence of a worst-case parameter combination is thus not measured and a control architecture can be rejected based on a very rare and extremely unlikely scenario. This PhD research makes advances in probabilistic μ-analysis to develop new efficient and reliable tools to improve the characterization of rare but nonetheless possible events. This to tighten the aforementioned V&V analysis gap between simulation-based methods and deterministic model-based worst-case approaches
Capitoli di libri sul tema "Probabilistic μ-Analysis"
Hausmann, Daniel, e Lutz Schröder. "Quasipolynomial Computation of Nested Fixpoints". In Tools and Algorithms for the Construction and Analysis of Systems, 38–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72016-2_3.
Testo completoAtti di convegni sul tema "Probabilistic μ-Analysis"
Somers, Franca, Clément Roos, Francesco Sanfedino, Samir Bennani e Valentin Preda. "A μ-analysis based approach to probabilistic delay margin analysis of uncertain linear systems*". In 2023 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2023. http://dx.doi.org/10.1109/ccta54093.2023.10253108.
Testo completoFranca Somers, Miss, Clément Roos, Francesco Sanfedino, Samir Bennani e Valentin Preda. "Probabilistic stability margins and their application to AOCS validation". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-089.
Testo completoEvain, Hélène, Tommaso Casati, Clément Roos e Jean-Marc Biannic. "Attitude control laws validation through probabilistic µ-analysis : application to a microsatellite control laws". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-058.
Testo completoMartin, Maurice, Stefan Winkler e Frederik Belien. "Towards New V&V in AOCS/GNC for Industrial Efficiency". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-171.
Testo completo