Articoli di riviste sul tema "Predictive uncertainty quantification"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Predictive uncertainty quantification".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems". Energies 15, n. 17 (1 settembre 2022): 6379. http://dx.doi.org/10.3390/en15176379.
Testo completoCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, Rodrigo Schuller, Roberto B. Seixas, Roberto I. Oliveira e Paulo Orenstein. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 13 (26 giugno 2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Testo completoLew, Jiann-Shiun, e Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification". Journal of Guidance, Control, and Dynamics 35, n. 3 (maggio 2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Testo completoKarimi, Hamed, e Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction". Proceedings of the AAAI Symposium Series 1, n. 1 (3 ottobre 2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Testo completoAkitaya, Kento, e Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)". Water 16, n. 3 (28 gennaio 2024): 423. http://dx.doi.org/10.3390/w16030423.
Testo completoSingh, Rishabh, e Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models". Neural Computation 33, n. 5 (13 aprile 2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Testo completoChen, Peng, e Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification". Communications in Computational Physics 14, n. 4 (ottobre 2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Testo completoOmagbon, Jericho, John Doherty, Angus Yeh, Racquel Colina, John O'Sullivan, Julian McDowell, Ruanui Nicholson, Oliver J. Maclaren e Michael O'Sullivan. "Case studies of predictive uncertainty quantification for geothermal models". Geothermics 97 (dicembre 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Testo completoNitschke, C. T., P. Cinnella, D. Lucor e J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity". Journal of Fluids and Structures 73 (agosto 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Testo completoMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li e M. Frenklach. "Uncertainty Quantification in Chemical Modeling". Eurasian Chemico-Technological Journal 20, n. 1 (31 marzo 2018): 33. http://dx.doi.org/10.18321/ectj706.
Testo completoAlbi, Giacomo, Lorenzo Pareschi e Mattia Zanella. "Uncertainty Quantification in Control Problems for Flocking Models". Mathematical Problems in Engineering 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/850124.
Testo completoKumar, Bhargava, Tejaswini Kumar, Swapna Nadakuditi, Hitesh Patel e Karan Gupta. "Comparing Conformal and Quantile Regression for Uncertainty Quantification: An Empirical Investigation". International Journal of Computing and Engineering 5, n. 5 (27 maggio 2024): 1–8. http://dx.doi.org/10.47941/ijce.1925.
Testo completoGorle, Catherine. "Improving the predictive capability of building simulations using uncertainty quantification". Science and Technology for the Built Environment 28, n. 5 (28 maggio 2022): 575–76. http://dx.doi.org/10.1080/23744731.2022.2079261.
Testo completoDelottier, Hugo, John Doherty e Philip Brunner. "Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model". Geoscientific Model Development 16, n. 14 (26 luglio 2023): 4213–31. http://dx.doi.org/10.5194/gmd-16-4213-2023.
Testo completoGerber, Eric A. E., e Bruce A. Craig. "A mixed effects multinomial logistic-normal model for forecasting baseball performance". Journal of Quantitative Analysis in Sports 17, n. 3 (6 gennaio 2021): 221–39. http://dx.doi.org/10.1515/jqas-2020-0007.
Testo completoWells, S., A. Plotkowski, J. Coleman, M. Rolchigo, R. Carson e M. J. M. Krane. "Uncertainty quantification for computational modelling of laser powder bed fusion". IOP Conference Series: Materials Science and Engineering 1281, n. 1 (1 maggio 2023): 012024. http://dx.doi.org/10.1088/1757-899x/1281/1/012024.
Testo completoMa, Junwei, Xiao Liu, Xiaoxu Niu, Yankun Wang, Tao Wen, Junrong Zhang e Zongxing Zou. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique". International Journal of Environmental Research and Public Health 17, n. 13 (3 luglio 2020): 4788. http://dx.doi.org/10.3390/ijerph17134788.
Testo completoFeng, Jinchao, Joshua L. Lansford, Markos A. Katsoulakis e Dionisios G. Vlachos. "Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences". Science Advances 6, n. 42 (ottobre 2020): eabc3204. http://dx.doi.org/10.1126/sciadv.abc3204.
Testo completoBanerjee, Sourav. "Uncertainty Quantification Driven Predictive Multi-Scale Model for Synthesis of Mycotoxins". Computational Biology and Bioinformatics 2, n. 1 (2014): 7. http://dx.doi.org/10.11648/j.cbb.20140201.12.
Testo completoRiley, Matthew E., e Ramana V. Grandhi. "Quantification of model-form and predictive uncertainty for multi-physics simulation". Computers & Structures 89, n. 11-12 (giugno 2011): 1206–13. http://dx.doi.org/10.1016/j.compstruc.2010.10.004.
Testo completoZgraggen, Jannik, Gianmarco Pizza e Lilach Goren Huber. "Uncertainty Informed Anomaly Scores with Deep Learning: Robust Fault Detection with Limited Data". PHM Society European Conference 7, n. 1 (29 giugno 2022): 530–40. http://dx.doi.org/10.36001/phme.2022.v7i1.3342.
Testo completoKefalas, Marios, Bas van Stein, Mitra Baratchi, Asteris Apostolidis e Thomas Baeck. "End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines". PHM Society European Conference 7, n. 1 (29 giugno 2022): 245–60. http://dx.doi.org/10.36001/phme.2022.v7i1.3317.
Testo completoSætrom, Jon, Joakim Hove, Jan-Arild Skjervheim e Jon Gustav Vabø. "Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques". SPE Journal 17, n. 01 (31 gennaio 2012): 152–62. http://dx.doi.org/10.2118/145192-pa.
Testo completoOlalusi, Oladimeji B., e Panagiotis Spyridis. "Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures". Applied Sciences 10, n. 19 (4 ottobre 2020): 6955. http://dx.doi.org/10.3390/app10196955.
Testo completoDing, Jing, Yizhuang David Wang, Saqib Gulzar, Youngsoo Richard Kim e B. Shane Underwood. "Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the Bayesian Inference-Based Markov Chain Monte Carlo Method". Transportation Research Record: Journal of the Transportation Research Board 2674, n. 4 (13 marzo 2020): 247–60. http://dx.doi.org/10.1177/0361198120910149.
Testo completoDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts e D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences Discussions 11, n. 9 (10 settembre 2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Testo completoKarimanzira, Divas. "Probabilistic Uncertainty Consideration in Regionalization and Prediction of Groundwater Nitrate Concentration". Knowledge 4, n. 4 (25 settembre 2024): 462–80. http://dx.doi.org/10.3390/knowledge4040025.
Testo completoCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION". EPJ Web of Conferences 247 (2021): 00002. http://dx.doi.org/10.1051/epjconf/202124700002.
Testo completoCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION". EPJ Web of Conferences 247 (2021): 20005. http://dx.doi.org/10.1051/epjconf/202124720005.
Testo completoSlavinskaya, N. A., M. Abbasi, J. H. Starcke, R. Whitside, A. Mirzayeva, U. Riedel, W. Li et al. "Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion". Energy & Fuels 31, n. 3 (14 febbraio 2017): 2274–97. http://dx.doi.org/10.1021/acs.energyfuels.6b02319.
Testo completoTran, Vinh Ngoc, e Jongho Kim. "Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations". Stochastic Environmental Research and Risk Assessment 33, n. 7 (luglio 2019): 1453–76. http://dx.doi.org/10.1007/s00477-019-01703-0.
Testo completoWalz, Eva-Maria, Alexander Henzi, Johanna Ziegel e Tilmann Gneiting. "Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output". SIAM Review 66, n. 1 (febbraio 2024): 91–122. http://dx.doi.org/10.1137/22m1541915.
Testo completoHeringhaus, Monika E., Yi Zhang, André Zimmermann e Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference". Sensors 22, n. 14 (20 luglio 2022): 5408. http://dx.doi.org/10.3390/s22145408.
Testo completoIncorvaia, Gabriele, Darryl Hond e Hamid Asgari. "Uncertainty Quantification of Machine Learning Model Performance via Anomaly-Based Dataset Dissimilarity Measures". Electronics 13, n. 5 (29 febbraio 2024): 939. http://dx.doi.org/10.3390/electronics13050939.
Testo completoMa, Junwei, Xiaoxu Niu, Huiming Tang, Yankun Wang, Tao Wen e Junrong Zhang. "Displacement Prediction of a Complex Landslide in the Three Gorges Reservoir Area (China) Using a Hybrid Computational Intelligence Approach". Complexity 2020 (28 gennaio 2020): 1–15. http://dx.doi.org/10.1155/2020/2624547.
Testo completoNamadchian, Ali, Mehdi Ramezani e Yuanyuan Zou. "Uncertainty quantification of model predictive control for nonlinear systems with parametric uncertainty using hybrid pseudo-spectral method". Cogent Engineering 6, n. 1 (1 gennaio 2019): 1691803. http://dx.doi.org/10.1080/23311916.2019.1691803.
Testo completoChen, Ming, Xinhu Zhang, Kechun Shen e Guang Pan. "Sparse Polynomial Chaos Expansion for Uncertainty Quantification of Composite Cylindrical Shell with Geometrical and Material Uncertainty". Journal of Marine Science and Engineering 10, n. 5 (14 maggio 2022): 670. http://dx.doi.org/10.3390/jmse10050670.
Testo completoShrestha, Durga L., Nagendra Kayastha, Dimitri Solomatine e Roland Price. "Encapsulation of parametric uncertainty statistics by various predictive machine learning models: MLUE method". Journal of Hydroinformatics 16, n. 1 (25 luglio 2013): 95–113. http://dx.doi.org/10.2166/hydro.2013.242.
Testo completoYe, Yanan, Alvaro Ruiz-Martinez, Peng Wang e Daniel M. Tartakovsky. "Quantification of Predictive Uncertainty in Models of FtsZ ring assembly in Escherichia coli". Journal of Theoretical Biology 484 (gennaio 2020): 110006. http://dx.doi.org/10.1016/j.jtbi.2019.110006.
Testo completoHasselman, Timothy, e George Lloyd. "A top-down approach to calibration, validation, uncertainty quantification and predictive accuracy assessment". Computer Methods in Applied Mechanics and Engineering 197, n. 29-32 (maggio 2008): 2596–606. http://dx.doi.org/10.1016/j.cma.2007.07.031.
Testo completoXie, Shulian, Feng Xue, Weimin Zhang e Jiawei Zhu. "Data-Driven Predictive Maintenance Policy Based on Dynamic Probability Distribution Prediction of Remaining Useful Life". Machines 11, n. 10 (25 settembre 2023): 923. http://dx.doi.org/10.3390/machines11100923.
Testo completoZhu, Hong-Yu, Gang Wang, Yi Liu e Ze-Kun Zhou. "Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing". International Journal of Modern Physics B 34, n. 14n16 (20 aprile 2020): 2040083. http://dx.doi.org/10.1142/s0217979220400834.
Testo completoBoso, F., e D. M. Tartakovsky. "Learning on dynamic statistical manifolds". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, n. 2239 (luglio 2020): 20200213. http://dx.doi.org/10.1098/rspa.2020.0213.
Testo completoDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts e D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments". Hydrology and Earth System Sciences 19, n. 7 (23 luglio 2015): 3181–201. http://dx.doi.org/10.5194/hess-19-3181-2015.
Testo completoPandey, Deep Shankar, e Qi Yu. "Evidential Conditional Neural Processes". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 8 (26 giugno 2023): 9389–97. http://dx.doi.org/10.1609/aaai.v37i8.26125.
Testo completoDavis, Gary A., e Christopher Cheong. "Pedestrian Injury Severity vs. Vehicle Impact Speed: Uncertainty Quantification and Calibration to Local Conditions". Transportation Research Record: Journal of the Transportation Research Board 2673, n. 11 (16 giugno 2019): 583–92. http://dx.doi.org/10.1177/0361198119851747.
Testo completoGupta, Ishank, Deepak Devegowda, Vikram Jayaram, Chandra Rai e Carl Sondergeld. "Machine learning regressors and their metrics to predict synthetic sonic and mechanical properties". Interpretation 7, n. 3 (1 agosto 2019): SF41—SF55. http://dx.doi.org/10.1190/int-2018-0255.1.
Testo completoGuerra, Gabriel, Fernando A. Rochinha, Renato Elias, Daniel de Oliveira, Eduardo Ogasawara, Jonas Furtado Dias, Marta Mattoso e Alvaro L. G. A. Coutinho. "UNCERTAINTY QUANTIFICATION IN COMPUTATIONAL PREDICTIVE MODELS FOR FLUID DYNAMICS USING A WORKFLOW MANAGEMENT ENGINE". International Journal for Uncertainty Quantification 2, n. 1 (2012): 53–71. http://dx.doi.org/10.1615/int.j.uncertaintyquantification.v2.i1.50.
Testo completoPeltz, James J., Dan G. Cacuci, Aurelian F. Badea e Madalina C. Badea. "Predictive Modeling Applied to a Spent Fuel Dissolver Model—II: Uncertainty Quantification and Reduction". Nuclear Science and Engineering 183, n. 3 (1 luglio 2016): 332–46. http://dx.doi.org/10.13182/nse15-99.
Testo completoKasiviswanathan, K. S., e K. P. Sudheer. "Quantification of the predictive uncertainty of artificial neural network based river flow forecast models". Stochastic Environmental Research and Risk Assessment 27, n. 1 (28 giugno 2012): 137–46. http://dx.doi.org/10.1007/s00477-012-0600-2.
Testo completo