Letteratura scientifica selezionata sul tema "Polymers"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Polymers".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Polymers"
Hili, Ryan, Chun Guo, Dehui Kong e Yi Lei. "Expanding the Chemical Diversity of DNA". Synlett 29, n. 11 (20 marzo 2018): 1405–14. http://dx.doi.org/10.1055/s-0036-1591959.
Testo completoChen, Guang, Lei Tao e Ying Li. "Predicting Polymers’ Glass Transition Temperature by a Chemical Language Processing Model". Polymers 13, n. 11 (7 giugno 2021): 1898. http://dx.doi.org/10.3390/polym13111898.
Testo completoBrostow, Witold, Hanna Fałtynowicz, Osman Gencel, Andrei Grigoriev, Haley E. Hagg Lobland e Danny Zhang. "Mechanical and Tribological Properties of Polymers and Polymer-Based Composites". Chemistry & Chemical Technology 14, n. 4 (15 dicembre 2020): 514–20. http://dx.doi.org/10.23939/chcht14.04.514.
Testo completoChen, Jian Fang, e Ai Hua Ling. "Design and Synthesis of a Miktoarm Star PMMAZO-(PCL)2 Copolymer". Advanced Materials Research 332-334 (settembre 2011): 2089–92. http://dx.doi.org/10.4028/www.scientific.net/amr.332-334.2089.
Testo completoMartens, C. M., R. Tuinier e M. Vis. "Depletion interaction mediated by semiflexible polymers". Journal of Chemical Physics 157, n. 15 (21 ottobre 2022): 154102. http://dx.doi.org/10.1063/5.0112015.
Testo completoShahzadi, Maria, Taimoor Hassan e Sana Saeed. "Application of Natural Polymers in Wound Dressings". Pakistan Journal of Medical and Health Sciences 16, n. 10 (30 ottobre 2022): 1–2. http://dx.doi.org/10.53350/pjmhs2216101.
Testo completoCaldona, Eugene B., Ernesto I. Borrego, Ketki E. Shelar, Karl M. Mukeba e Dennis W. Smith. "Ring-Forming Polymerization toward Perfluorocyclobutyl and Ortho-Diynylarene-Derived Materials: From Synthesis to Practical Applications". Materials 14, n. 6 (18 marzo 2021): 1486. http://dx.doi.org/10.3390/ma14061486.
Testo completoEwert, Ernest, Izabela Pospieszna-Markiewicz, Martyna Szymańska, Adrianna Kurkiewicz, Agnieszka Belter, Maciej Kubicki, Violetta Patroniak, Marta A. Fik-Jaskółka e Giovanni N. Roviello. "New N4-Donor Ligands as Supramolecular Guests for DNA and RNA: Synthesis, Structural Characterization, In Silico, Spectrophotometric and Antimicrobial Studies". Molecules 28, n. 1 (3 gennaio 2023): 400. http://dx.doi.org/10.3390/molecules28010400.
Testo completoBecskereki, Gergely, George Horvai e Blanka Tóth. "The Selectivity of Molecularly Imprinted Polymers". Polymers 13, n. 11 (28 maggio 2021): 1781. http://dx.doi.org/10.3390/polym13111781.
Testo completoChang, L. L., D. L. Raudenbush e S. K. Dentel. "Aerobic and anaerobic biodegradability of a flocculant polymer". Water Science and Technology 44, n. 2-3 (1 luglio 2001): 461–68. http://dx.doi.org/10.2166/wst.2001.0802.
Testo completoTesi sul tema "Polymers"
Schlindwein, Walkiria Santos. "Conducting polymers and polymer electrolytes". Thesis, University of Leicester, 1990. http://hdl.handle.net/2381/33889.
Testo completoMuangpil, Sairoong. "Functionalised polymers and nanoparticle/polymer blends". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.654111.
Testo completoChester, Shawn Alexander. "Mechanics of amorphous polymers and polymer gels". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68898.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 345-356).
Many applications of amorphous polymers require a thermo-mechanically coupled large-deformation elasto-viscoplasticity theory which models the strain rate and temperature dependent response of amorphous polymeric materials in a temperature range which spans the glass transition temperature of the material. We have formulated such a theory, and also numerically implemented our theory in a finite element program. The material parameters in the theory have been calibrated for poly(methyl methacrylate), polycarbonate, and Zeonex - a cyclo-olefin polymer. The predictive capabilities of the constitutive theory and its numerical implementation have been validated by comparing the results from a suite of validation experiments against corresponding results from numerical simulations. Amorphous chemically-crosslinked polymers form a relatively new class of thermallyactuated shape-memory polymers. Several biomedical applications for thermally-actuated shape-memory polymers have been proposed/demonstrated in the recent literature. However, actual use of such polymers and devices made from these materials is still quite limited. For the variety of proposed applications to be realized with some confidence in their performance, it is important to develop a constitutive theory for the thermo-mechanical response of these materials and a numerical simulation-based design capability which, when supported with experimental data, will allow for the prediction of the response of devices made from these materials under service conditions. We have developed such a theory and a numerical simulation capability, and demonstrated its utility for modeling the thermo-mechanical response of the shape-memory polymer tBA-PEGDMA. An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain thermally-responsive gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a thermodynamically-consistent continuum-level theory to describe the coupled mechanical-deformation, fluid permeation, and heat transfer of such gels. We have numerically implemented our theory in a finite element program by writing thermo-chemo-mechanically coupled elements. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally-responsive swelling/de-swelling of such materials.
by Shawn Alexander Chester.
Ph.D.
Mohagheghian, Iman. "Impact response of polymers and polymer nanocomposites". Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648854.
Testo completoSun, Shuangyi. "Alkoxyphenacyl Polymers: A Novel Photodegradable Polymer Platform". University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1424234383.
Testo completoMichal, Brian. "Multi-Functional Stimuli-Responsive Polymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440396.
Testo completoSmartt, William Mark. "Formation of microporous polymer via thermally-induced phase transformations in polymer solutions". Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/32853.
Testo completoAmalou, Zhor. "Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides". Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210832.
Testo completoDans ce travail, une contribution originale est apportée à cette étude, et cela en combinant diverses techniques expérimentales permettant des mesures calorifiques et structurales en températures et temps réels. L’intérêt c’est porté sur les polymères linéaires aromatiques tels que le polyéthylènes teréphthalate, PET, et le polytriméthylène téréphthalate, PTT, caractérisés par une température de transition vitreuse supérieure à l’ambiante ( Tg > 50°) et une température de fusion élevée (Tm>220°C), offrant ainsi une assez large gamme de température de cristallisation (Tm-Tg). L’étude de la structure semi-cristalline du PET à l’échelle du nanomètre et de la relaxation des phases amorphes présentes dans sa structure est facilitée par l’utilisation d’un diluant amorphe tel que le polyétherimide (PEI), qui forme un mélange miscible avec le PET.
L’utilisation de microscopie de force atomique AFM à haute température a permis d’observer la cristallisation isotherme de PET en temps réel et de décrire ainsi la cristallisation secondaire comme un processus d'épaississement des piles lamellaires. De plus, l’analyse de la structure semi-cristalline du PET et du PTT, dans l’espace direct, sont en faveur d’un modèle structural homogène, où l’épaisseur lamellaire moyenne est légèrement inférieure à l’épaisseur moyenne des régions amorphes interlamellaires. Ces résultats ont permis, d’une part, d’apporter une meilleure interprétation aux données obtenues par diffusion des rayons X aux petits angles (SAXS), et d’autre part, d’ interpréter le comportement de fusion multiple caractéristique des polymères semi-cristallin à chaînes semi-rigides par le seul processus de fusion-recristallisation. Dans l’étude investiguée sur les mélanges PET/PEI et sur le PTT pur, on montre que la cinétique d’un tel processus est particulièrement rapide comparée à la cristallisation. De plus, les observations par AFM et par microscopie optique de même que les mesures SAXS en temps réel ont montré la simultanéité et la compétition existant entre la fusion des cristaux et leur réorganisation durant la chauffe. Par ailleurs, la relaxation des régions amorphes interlamellaires, souvent considérées comme rigides, a pu être mise en évidence par les mesures AFM et SAXS réalisées à haute température sur des échantillons de PET/PEI semi-cristallins.
Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished
Cooke, Richard Hunter III. "THE ENHANCEMENT OF PEROXIDE-CURED FLUOROELASTOMER RUBBER TO METAL BONDING". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1377022145.
Testo completoYang, Lianyun. "Novel Ferroelectric Behavior in Poly(vinylidene fluoride-co-trifluoroethylene)-Based Random Copolymers". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1431686125.
Testo completoLibri sul tema "Polymers"
Powell, Peter C. Engineering with polymers. 2a ed. Cheltenham: Stanley Thornes, 1998.
Cerca il testo completoGodovsky, Yu K., K. Horie, A. Kaneda, N. Kinjo, L. F. Kosyanchuk, Yu S. Lipatov, T. E. Lipatova et al. Speciality Polymers/Polymer Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0017962.
Testo completoAkelah, A. Functionalized polymers and their applications. London: Chapman and Hall, 1990.
Cerca il testo completoRubinson, Judith F., e Harry B. Mark, a cura di. Conducting Polymers and Polymer Electrolytes. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0832.
Testo completoChiellini, Emo, Junzo Sunamoto, Claudio Migliaresi, Raphael M. Ottenbrite e Daniel Cohn, a cura di. Biomedical Polymers and Polymer Therapeutics. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b112950.
Testo completoI, Kroschwitz Jacqueline, a cura di. Polymers: Polymer characterization and analysis. New York: Wiley, 1990.
Cerca il testo completoEmo, Chiellini, e International Symposium on Frontiers in Biomedical Polymers including Polymer Therapeutics: From Laboratory to Clinical Practice (3rd : 1999 : Shiga, Japan), a cura di. Biomedical polymers and polymer therapeutics. New York: Kluwer Academic/Plenum Publishers, 2001.
Cerca il testo completoDonald, A. M. Liquid crystalline polymers. Cambridge [England]: Cambridge University Press, 1992.
Cerca il testo completoEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L e Ivanov V. B, a cura di. Aging of polymers, polymer blends and polymer composites. New York: Nova Science Publishers, 2002.
Cerca il testo completoEfremovich, Zaikov Gennadiĭ, Bouchachenko A. L e Ivanov V. B, a cura di. Aging of polymers, polymer blends, and polymer composites. New York: Nova Science Publishers, 2002.
Cerca il testo completoCapitoli di libri sul tema "Polymers"
Xanthos, Marino. "Polymers and Polymer Composites". In Functional Fillers for Plastics, 1–16. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605096.ch1.
Testo completoXanthos, Marino. "Polymers and Polymer Composites". In Functional Fillers for Plastics, 1–18. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629848.ch1.
Testo completoVoisey, K. T. "Polymers and Polymer Composites". In The Engineer’s Guide to Materials, 97–124. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62937-2_6.
Testo completoCzarnecki, Lech, Dionys Van Gemert, Ru Wang e Mahmoud Reda Taha. "Searching for a New C-PC Development Paradigm". In Springer Proceedings in Materials, 3–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_1.
Testo completoParisi, Ortensia Ilaria, Manuela Curcio e Francesco Puoci. "Polymer Chemistry and Synthetic Polymers". In Advanced Polymers in Medicine, 1–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12478-0_1.
Testo completoBhatia, Saurabh. "Natural Polymers vs Synthetic Polymer". In Natural Polymer Drug Delivery Systems, 95–118. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41129-3_3.
Testo completoBrandrup, Johannes, e Wiesbaden. "Polymers, Polymer Recycling, and Sustainability". In Plastics and the Environment, 521–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471721557.ch13.
Testo completoWalton, David J., e J. Phillip Lorimer. "General principles and historical aspects". In Polymers. Oxford University Press, 2000. http://dx.doi.org/10.1093/hesc/9780198503897.003.0001.
Testo completoHan, Chang Dae. "Rheology of Particulate-Filled Polymers, Nanocomposites, and Fiber-Reinforced Thermoplastic Composites". In Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0018.
Testo completoHan, Chang Dae. "Relationships Between Polymer Rheology and Polymer Processing". In Rheology and Processing of Polymeric Materials: Volume 1: Polymer Rheology. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195187823.003.0005.
Testo completoAtti di convegni sul tema "Polymers"
Kim, Bumjoon J. "Design of electroactive polymers for intrinsically-stretchable polymer solar cells". In Organic, Hybrid, and Perovskite Photovoltaics XXV, a cura di Gang Li e Natalie Stingelin, 41. SPIE, 2024. http://dx.doi.org/10.1117/12.3029279.
Testo completoLiu, Y. S., H. S. Cole e H. R. Philipp. "Interactions of excimer lasers with polymers". In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.fb2.
Testo completoZhang, Yadong, Liming Wang, Tatsuo Wada e Hiroyuki Sasabe. "Carbazole Main-Chain Polymers with Di-Acceptor-Substituents for Nonlinear Optics". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.8.
Testo completoInganas, Olle, Soumyadeb Ghosh, Emil J. Samuelsen, Knut E. Aasmundtveit, Leif A. A. Pettersson e Tomas Johansson. "Model polymers for polymer actuators". In 1999 Symposium on Smart Structures and Materials, a cura di Yoseph Bar-Cohen. SPIE, 1999. http://dx.doi.org/10.1117/12.349712.
Testo completoBurland, D. M., R. G. Devoe, M. C. Jurich, V. Y. Lee, R. D. Miller, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest e W. Volksen. "Incorporation of Thermally Stable Nonlinear Optical Polymers into Electrooptic Devices". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wa.3.
Testo completoKippelen, B., K. Meerholz, B. L. Volodin, Sandalphon e N. Peyghambarian. "High Efficiency Photorefractive Polymers". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wgg.2.
Testo completoLevenson, R., J. Liang, C. Rossier, M. Van Beylen, C. Samyn, F. Foll, Rousseau e J. Zyss. "Stability-Efficiency Trade-Off in Non-Linear Optical Polymers". In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wd.6.
Testo completoWagner, Eva, Kathryn Uhrich e Thomas Twardowski. "Processing Considerations for Salicylic Acid-Based Polymers". In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55130.
Testo completoChe, H., P. Vo e S. Yue. "Metallization of Various Polymers by Cold Spray". In ITSC2017, a cura di A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen e C. A. Widener. DVS Media GmbH, 2017. http://dx.doi.org/10.31399/asm.cp.itsc2017p0098.
Testo completoMöhlmann, G. R., W. H. G. Horsthuis, M. B. J. Diemeer, F. M. M. Suyten, E. S. Trommel, A. McDonach e N. McFadyen. "Optically Nonlinear Polymers in Guided Wave Electro-Optic Devices". In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.fb4.
Testo completoRapporti di organizzazioni sul tema "Polymers"
Stavland, Arne, Siv Marie Åsen, Arild Lohne, Olav Aursjø e Aksel Hiorth. Recommended polymer workflow: Lab (cm and m scale). University of Stavanger, novembre 2021. http://dx.doi.org/10.31265/usps.201.
Testo completoLambeth, Robert H., Randy A. Mrozek, Joseph L. Lenhart, Yelena R. Sliozberg e Jan W. Andzelm. Branched Polymers for Enhancing Polymer Gel Strength and Toughness. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2013. http://dx.doi.org/10.21236/ada577092.
Testo completoBohnert, G. W. Conductive Polymers. Office of Scientific and Technical Information (OSTI), novembre 2002. http://dx.doi.org/10.2172/804936.
Testo completoSalovey, Ronald, e John J. Aklonis. The Behavior of Polymers Filled with Monodisperse Polymeric Beads. Fort Belvoir, VA: Defense Technical Information Center, novembre 1991. http://dx.doi.org/10.21236/ada242732.
Testo completoPang, Yi. Exploring novel silicon-containing polymers---From preceramic polymers to conducting polymers with nonlinear optical properties. Office of Scientific and Technical Information (OSTI), ottobre 1991. http://dx.doi.org/10.2172/5097635.
Testo completoRussell, Thomas P. Interfacial Behavior of Polymers: Using Interfaces to Manipulate Polymers. Office of Scientific and Technical Information (OSTI), febbraio 2015. http://dx.doi.org/10.2172/1171152.
Testo completoLotufo, Guilherme, Mandy Michalsen, Danny Reible, Philip Gschwend, Upal Ghosh, Alan Kennedy, Kristen Kerns et al. Interlaboratory study of polyethylene and polydimethylsiloxane polymeric samplers for ex situ measurement of freely dissolved hydrophobic organic compounds in sediment porewater. Engineer Research and Development Center (U.S.), maggio 2024. http://dx.doi.org/10.21079/11681/48512.
Testo completoKempel, Leo, e Shanker Balasubramaniam. RF Polymers II. Fort Belvoir, VA: Defense Technical Information Center, marzo 2009. http://dx.doi.org/10.21236/ada495291.
Testo completoPhillips, Shawn H., Timothy S. Haddad, Rusty L. Blanski, Andre Y. Lee e Richard A. Vaia. Molecularly Reinforced Polymers. Fort Belvoir, VA: Defense Technical Information Center, giugno 2001. http://dx.doi.org/10.21236/ada409917.
Testo completoGordon, III, Runt Bernard, Painter James P. e Paul C. New Conducting Polymers. Fort Belvoir, VA: Defense Technical Information Center, giugno 1988. http://dx.doi.org/10.21236/ada197009.
Testo completo