Letteratura scientifica selezionata sul tema "Photovoltaic (PV) panels(PV)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Photovoltaic (PV) panels(PV)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Photovoltaic (PV) panels(PV)"
Zhang, Haitao, Peng Tian, Jie Zhong, Yongchao Liu e Jialin Li. "Mapping Photovoltaic Panels in Coastal China Using Sentinel-1 and Sentinel-2 Images and Google Earth Engine". Remote Sensing 15, n. 15 (25 luglio 2023): 3712. http://dx.doi.org/10.3390/rs15153712.
Testo completoPanda, Babita, Sampurna Panda, Rakesh Kumar, Chitralekha Jena, Lipika Nanda e Arjyadhara Pradhan. "ENERGY & EXERGY ANALYSIS OF A PV PANEL WITH PASSIVE COOLING MECHANISM". Suranaree Journal of Science and Technology 30, n. 6 (17 gennaio 2024): 010260(1–6). http://dx.doi.org/10.55766/sujst-2023-06-e01379.
Testo completoNedelchev, Ivaylo, e Hristo Zhivomirov. "A combined approach for assessment the functionality of photovoltaic modules in real-world operation". E3S Web of Conferences 180 (2020): 02006. http://dx.doi.org/10.1051/e3sconf/202018002006.
Testo completoDabral, Atulesh, Rahul Kumar, S. C. Ram, Amit Morey, Sumit Mohan e Devesh Sharma. "Effect of Anti-Reflective and Dust Spreading on Performance of Solar PV Panels". IOP Conference Series: Earth and Environmental Science 1285, n. 1 (1 gennaio 2024): 012029. http://dx.doi.org/10.1088/1755-1315/1285/1/012029.
Testo completoArifin, Zainal, Dominicus Danardono Dwi Prija Tjahjana, Syamsul Hadi, Rendy Adhi Rachmanto, Gabriel Setyohandoko e Bayu Sutanto. "Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks". International Journal of Photoenergy 2020 (10 gennaio 2020): 1–9. http://dx.doi.org/10.1155/2020/1574274.
Testo completoChala, Girma T., Shaharin A. Sulaiman, Xuecheng Chen e Salim S. Al Shamsi. "Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman". Energies 17, n. 12 (12 giugno 2024): 2871. http://dx.doi.org/10.3390/en17122871.
Testo completoZhang, Zhihan, Qiaoyu Wang, Demou Cao e Kai Kang. "Impact of Photovoltaics". Modern Electronic Technology 5, n. 1 (6 maggio 2021): 5. http://dx.doi.org/10.26549/met.v5i1.6315.
Testo completoZhang, Wei, Guanghui Wang, Guoqing Yao, Chen Lu e Yu Liu. "Study on Fault Monitoring Technology of Photovoltaic Panel Based on Thermal Infrared and Optical Remote Sensing". International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-1-2024 (11 maggio 2024): 855–60. http://dx.doi.org/10.5194/isprs-archives-xlviii-1-2024-855-2024.
Testo completoSambu, Srikanth, e Byamakesh Nayak. "Reliability oriented performance evaluation of PV inverter with bifacial panels considering albedos". International Journal of Applied Power Engineering (IJAPE) 13, n. 4 (1 dicembre 2024): 815. http://dx.doi.org/10.11591/ijape.v13.i4.pp815-824.
Testo completoThaib, Razali, Hamdani Umar e T. Azuar Rizal. "Experimental Study of the Use of Phase Change Materials as Cooling Media on Photovoltaic Panels". European Journal of Engineering and Technology Research 6, n. 3 (12 aprile 2021): 22–26. http://dx.doi.org/10.24018/ejers.2021.6.3.2405.
Testo completoTesi sul tema "Photovoltaic (PV) panels(PV)"
Bekker, Bernard. "Methods to extract maximum electrical energy from PV panels on the earth's surface". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50021.
Testo completoENGLISH ABSTRACT: This thesis investigates methods to extract the maximum amount of electrical energy from a py panel. The thesis is divided into four parts, focussing on different aspects relating to this topic. The first part will investigate the role that py energy is likely to play in South Africa's future energy scenario, by looking at topics like the greenhouse effect and the economics of energy production. Secondly the thesis will look at how to position py panels optimally for maximum energy generation through the year. A software model of a py panel is developed which can calculate available py energy and energy generation costs for a given location, based on parameters like the positioning of the py panel and historic weather data. Thirdly the optimal design of a maximum power point tracker is investigated. The optimal design, based on a k-sweep voltage ratio maximum power point tracking algorithm, is implemented using a DSP controlled boost converter circuit. Finally, the best methods to store energy generated using py panels are explored. Energy storage technologies are compared for rural, off-grid applications in South Africa, and the design and implementation of a pulse-charging lead-acid battery charging strategy is explained.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek maniere waarop die maksimum hoeveelheid elektriese energie vanuit 'n py paneelonttrek kan word. Die tesis word in vier dele verdeel, wat elkeen fokus op 'n ander aspek van die onderwerp. Die eerste kyk na die rol wat PV energie potensieël kan speel in die toekomstige energie produksie binne Suid Afrika, deur te kyk na onderwerpe soos die kweekhuis effek, en die ekonomiese sy van energie produksie. Tweedens kyk die tesis na metodes om 'n py paneeloptimaal te posisioneer vir maksimum energie deur die jaar. 'n Sagteware model van 'n PV paneel word ontwikkel wat die hoeveelheid beskikbare energie, en die kostes daarvan, kan bereken vir 'n spesifieke plek, gebaseer op PV paneel data en vorige jare se atmosferiese data. Derdens word agtergrond oor maksimum drywingspunt volgers gegee, en die ontwerp en bou van 'n k-variërende, spannings verhouding maksimum kragpunt volger verduidelik, geimplimenteer deur van 'n DSP en 'n opkapper baan gebruik te maak. Laastens word die beste maniere om PV energie te stoor, vir landelike toepassings weg vanaf die Eskom netwerk, ondersoek. Alle beskikbare tegnologieë word eers vergelyk met mekaar, waarna die ontwerp en bou van 'n puls-laai loodsuur batterylaaier verduidelik word.
Kroutil, Roman. "Komplexní provozní diagnostika FVE-T14 - opatření pro optimalizaci provozu". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-242083.
Testo completoWang, Xin. "Online health monitoring of photovoltaic panels by converter-based impedance spectroscopy". Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0039_WANG.pdf.
Testo completoTo meet the world's growing energy needs and with a view to sustainable development, the use of solar energy is leading a significant increase in the installation of photovoltaic (PV) panels, enabling the production of clean and renewable electricity. However, the PV panels are susceptible to faults during operating. These faults can result in power losses, low efficiency, system instability, even pose a risk of security. Health monitoring can mitigate these issues and improve the overall operating reliability and efficiency of PV panels. Among existing health monitoring tools for PV panels, impedance spectroscopy (IS) provides a powerful, non-destructive way to acquire PV panels' internal impedance over a wide frequency range. Compared with specific workstation-based IS, converter-based IS can help reduce overall system costs and facilitate online applications, as no additional equipment is required. However, the control strategy of the power converter needs to be specifically designed. Firstly, the bandwidth of the converter will limit the maximum frequency of the perturbation signal. Obtaining a complete IS spectrum with sufficient accuracy can thus be challenging. Secondly, to ensure a quasi-maximum output power of PV panels even during IS implementation, a cooperative control scheme between maximum power point tracking (MPPT) and IS modes should be considered. The major objectives of this research are twofold: (1) to propose a systematic design guideline for control strategies of converter-based IS implementation; (2) to establish an appropriate AC equivalent circuit model (AC-ECM) for PV panels and extract valuable health indicators for online health monitoring of PV panels. In one aspect, a bi-level control strategy of the power converter including an upper-level and a lower-level control is proposed. The upper-level control achieves the cooperative control of different operating modes, including MPPT, injection point tracking (IPT) and IS modes. The lower-level control includes the separate control of each mode. Particularly, for the IS mode, both open-loop control and closed-loop control have been systematically studied and compared. Under open-loop control, an analysis of the intrinsic resonance of the converter and the frequency limitation of the perturbation signal is performed. Furthermore, an adaptive configuration method for the amplitude of the AC duty cycle is proposed to eliminate the influence of the resonance and enhance the accuracy of IS measurement. Under closed-loop control, based on three commonly used compensation controllers, two control methods, named unified control and separated control, are designed and compared. In the unified control, a single proportional-integral (PI) controller controls the DC and AC components together to meet the control objectives. Meanwhile, in the separated control, a segmented lower pass filter (LPF) with a variable cut-off frequency is designed to effectively separate the DC component of the PV panel current from the AC perturbation signal. A proportional (P) and a quasi-proportional resonant (QPR) are further applied separately to control the AC component. In the other aspect, based on the acquired IS measurements, a simplified AC-ECM of the PV panel is proposed. This AC-ECM offers a fitting approach for the incomplete spectrum obtained through converter-based IS. Additionally, four health features are extracted and defined for monitoring the health states of the PV panel under various operating conditions. Finally, an experimental platform has been developed for online IS implementation. An experimental study has been conducted to verify that under the proposed control strategies, reliable and accurate IS measurements can be achieved. Under various operating conditions, the effectiveness of the online IS monitoring method based on the extracted features of the PV panel is verified as well
Badri, Seyed Ali Mohammad. "Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System". Thesis, Högskolan Dalarna, Energi och miljöteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:du-12666.
Testo completoSaadon, Syamimi. "Modeling and simulation of a ventilated building integrated photovoltaic/thermal (BIPV/T) envelope". Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0049.
Testo completoThe demand of energy consumed by human kind has been growing significantly over the past 30 years. Therefore, various actions are taken for the development of renewable energy and in particular solar energy. Many technological solutions have then been proposed, such as solar PV/T collectors whose objective is to improve the PV panels performance by recovering the heat lost with a heat removal fluid. The research for the improvement of the thermal and electrical productivities of these components has led to the gradual integration of the solar components into building in order to improve their absorbing area. Among technologies capable to produce electricity locally without con-tributing to greenhouse gas (GHG) releases is building integrated PV systems (BIPV). However, when exposed to intense solar radiation, the temperature of PV modules increases significantly, leading to a reduction in efficiency so that only about 14% of the incident radiation is converted into electrical energy. The high temperature also decreases the life of the modules, thereby making passive cooling of the PV components through natural convection a desirable and cost-effective means of overcoming both difficulties. A numerical model of heat transfer and fluid flow characteristics of natural convection of air is therefore undertaken so as to provide reliable information for the design of BIPV. A simplified numerical model is used to model the PVT collector so as to gain an understanding of the complex processes involved in cooling of integrated photovoltaic arrays in double-skin building surfaces. This work addresses the numerical simulation of a semi-transparent, ventilated PV façade designed for cooling in summer (by natural convection) and for heat recovery in winter (by mechanical ventilation). For both configurations, air in the cavity between the two building skins (photovoltaic façade and the primary building wall) is heated by transmission through transparent glazed sections, and by convective and radiative exchange. The system is simulated with the aid of a reduced-order multi-physics model adapted to a full scale arrangement operating under real conditions and developed for the TRNSYS software environment. Validation of the model and the subsequent simulation of a building-coupled system are then presented, which were undertaken using experimental data from the RESSOURCES project (ANR-PREBAT 2007). This step led, in the third chapter to the calculation of the heating and cooling needs of a simulated building and the investigation of impact of climatic variations on the system performance. The results have permitted finally to perform the exergy and exergoeconomic analysis
Boman, Kristin, Ida Adolfsson e Sofia Ekbring. "Bifacial photovoltaic systems established in a Nordic climate : A study investigating a frameless bifacial panel compared to a monofacial panel". Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384180.
Testo completoPalumbo, Adam M. "Design and Analysis of Cooling Methods for Solar Panels". Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1389719304.
Testo completoDvořák, Vít. "Návrh fotovoltaické elektrárny pro rodinný dům v okrese Jihlava". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442514.
Testo completoGarcía-Gutiérrez, Luis Antonio. "Développement d'un contrôle actif tolérant aux défaillances appliqué aux systèmes PV". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30071.
Testo completoThis work contributes by developing an active fault tolerant control (AFTC) for Photovoltaic (PV) systems. The fault detection and diagnosis (FDD) methodology is based on the analysis of a model that compares real-time measurement. We use a high granularity PV array model in the FDD tool to allow faults to be detected in complex conditions. Firstly, the research focuses on fault detection in complex shadow conditions. A real-time approach is presented to emulate the electrical characteristics of PV modules under complex shadow conditions. Using a precise emulators approach is a real challenge to study the high non-linearity and the complexity of PV systems in partial shading. The real-time emulation was validated with simple experimental results under failure conditions to design specific fault-detection algorithms in a first sample. The second part of the research addresses the FDD method for DC/DC and DC/AC power converters that are connected to the grid. Primary results allowed us to validate the system's recovery for normal operating points after a fault with this complete AFTC approach. Emulations based on the simulation of distributed power converters, fault detection methodologies based on a model, and a hybrid diagnostician were then presented
Salim, Hengky K. "Rooftop photovoltaic product stewardship transition in Australia using a novel systems approach and serious game". Thesis, Griffith University, 2021. http://hdl.handle.net/10072/410160.
Testo completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Libri sul tema "Photovoltaic (PV) panels(PV)"
Goodrich, Alan C. Solar PV manufacturing cost model group: Installed solar PV system prices. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Cerca il testo completoAl-Waeli, Ali H. A., Hussein A. Kazem, Miqdam Tariq Chaichan e Kamaruzzaman Sopian. Photovoltaic/Thermal (PV/T) Systems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27824-3.
Testo completo(Organization), IT Power, a cura di. Solar photovoltaic power generation using PV technology. [Manila?]: Asian Development Bank, 1996.
Cerca il testo completoJordan, Dirk. Survey of PV field experience. Golden, Colo.]: National Renewable Energy Laboratory, 2010.
Cerca il testo completoDeambi, Suneel. Solar PV power: A global perspective. New Delhi: The Energy and Resources Institute, 2011.
Cerca il testo completoS, Ullal Harin, IEEE Photovoltaic Specialists Conference (33rd : 2008 : San Diego, Calif.) e National Renewable Energy Laboratory (U.S.), a cura di. The role of polycrystalline thin-film PV technologies in competitive PV module markets: Preprint. Golden, Colo: National Renewable Energy Laboratory, 2008.
Cerca il testo completoThornton, John P. PV-related utility activities in Colorado. Golden, CO]: [National Renewable Energy Laboratory], 1991.
Cerca il testo completoLowder, Travis. The potential of securitization in solar PV finance. Golden, CO: National Renewable Energy Laboratory, 2013.
Cerca il testo completoThornton, John Preston. PV-related utility activities in Colorado. [Golden, CO: National Renewable Energy Laboratory, 1991.
Cerca il testo completoThornton, John Preston. PV-related utility activities in Colorado. [Golden, CO: National Renewable Energy Laboratory, 1991.
Cerca il testo completoCapitoli di libri sul tema "Photovoltaic (PV) panels(PV)"
Al−Ali, Amel Khalid Ali, Alaa Abdul-Ameer e Basim Touqan. "Establishing a Guideline and Decision-Making Approach for UAE Solar Assets Waste Management by Utilizing PVsyst". In BUiD Doctoral Research Conference 2023, 321–36. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-56121-4_31.
Testo completoChandrasekar, Murugesan, Tamilkolundu Senthilkumar e Poornanandan Gopal. "Cooling Approaches for Solar PV Panels". In The Effects of Dust and Heat on Photovoltaic Modules: Impacts and Solutions, 213–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84635-0_8.
Testo completoTiwari, Gopal Nath. "Photovoltaic (PV) Module and Its Panel and Array". In Advance Solar Photovoltaic Thermal Energy Technologies, 73–97. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4993-9_4.
Testo completoDe Simone, Marilena. "PV and Thermal Solar Systems Application in Buildings. A State of Art in the Context of Circular Economy". In Creating a Roadmap Towards Circularity in the Built Environment, 187–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45980-1_16.
Testo completoMandavgane, Aishwarya, Sujata Karve, Prajakta Kulkarni e Namrata Dhamankar. "The Impact of Solar Photovoltaic (PV) Rooftop Panels on Temperature Profiles of Surroundings and Urban Thermal Environment". In Green Energy and Technology, 409–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_35.
Testo completoUstaoğlu, Abid, e Samet Kuloğlu. "Choosing the Best Solar Panel for Photovoltaic (Pv) System Analytical Hierarchy Process (AHP)". In Springer Proceedings in Energy, 563–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30171-1_60.
Testo completoNgu, Nguyen Viet, Le Thi Minh Tam e Do Thanh Hieu. "Research Three-Phase Stand-Alone Photovoltaic System Control Methods When PV Panel Under Partial Shading Conditions". In Lecture Notes in Mechanical Engineering, 754–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99666-6_108.
Testo completoPalz, Wolfgang. "PV photovoltaics Policies photovoltaic (PV) policies and Markets photovoltaic (PV) market". In Encyclopedia of Sustainability Science and Technology, 8372–86. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_458.
Testo completoPalz, Wolfgang. "PV photovoltaics Policies photovoltaic (PV) policies and Markets photovoltaic (PV) market". In Solar Energy, 212–25. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5806-7_458.
Testo completoWhitaker, Charles M., Timothy U. Townsend, Anat Razon, Raymond M. Hudson e Xavier Vallvé. "PV Systems". In Handbook of Photovoltaic Science and Engineering, 841–95. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470974704.ch19.
Testo completoAtti di convegni sul tema "Photovoltaic (PV) panels(PV)"
Karimi, Hamed, Pouya Tarassodi, Alireza Siadatan e Maryam Sepehrinour. "Designing and Manufacturing a Solar Tracking of Photovoltaic (PV) Panels for Produce Maximum Power Electrical". In 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 498–502. IEEE, 2024. http://dx.doi.org/10.1109/speedam61530.2024.10609214.
Testo completoBodhanker, Prathusha, Ann Bradish e John Kelly Kissock. "Design and Performance Improvement of Mirror Augmented Photovoltaic Systems". In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59366.
Testo completoRosenthal, Andrew H., Bruna P. Gonçalves, J. A. Beckwith, Rohit Gulati, Marc D. Compere e Sandra K. S. Boetcher. "Phase-Change Material to Thermally Regulate Photovoltaic Panels to Improve Solar to Electric Efficiency". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50650.
Testo completoElsherbiny, Lamiaa, Ali Al-Alili e Saeed Alhassan. "Short Term Photovoltaic Power Forecasting". In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-63850.
Testo completoChapaneri, Kaushal, Shahzada Pamir Aly, Jim Joseph John, Gerhard Mathiak, Vivian Alberts e Muhammad A. Alam. "Self-Thermometry of PV Panels". In 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC). IEEE, 2023. http://dx.doi.org/10.1109/pvsc48320.2023.10359913.
Testo completoJakobsen, Michael Linde, Sune Thorsteinsson, Peter Behrensdorff Poulsen, Peter Melchior Rodder e Kristin Rodder. "Vertical reflector for bifacial PV-panels". In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750136.
Testo completoGhabuzyan, Levon, Jim Kuo e Christopher Baldus-Jeursen. "Quantifying the Effects of Convective Heat Transfer on Photovoltaic Performance and Optimal Tilt Angle". In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24356.
Testo completoHAERUMAN, Agus. "AI-Based PV Panels Inspection using an Advanced YOLO Algorithm". In Renewable Energy: Generation and Application. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903216-30.
Testo completoModrek, Mohamad, e Ali Al-Alili. "Experimental Investigation of a Flat Plate Photovoltaic/Thermal Collector". In ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/es2018-7223.
Testo completoNajafi, Hamidreza, e Keith Woodbury. "Feasibility Study of Using Thermoelectric Cooling Modules for Active Cooling of Photovoltaic Panels". In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88222.
Testo completoRapporti di organizzazioni sul tema "Photovoltaic (PV) panels(PV)"
Komoto, Keiichi, Jin-Seok Lee, Jia Zhang, Dwarakanath Ravikumar, Parikhit Sinha, Andreas Wade e Garvin A. Heath. End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies. Office of Scientific and Technical Information (OSTI), gennaio 2018. http://dx.doi.org/10.2172/1561523.
Testo completoDavidson, Carolyn, e Robert Margolis. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation. Office of Scientific and Technical Information (OSTI), ottobre 2015. http://dx.doi.org/10.2172/1225927.
Testo completoDavidson, Carolyn, e Robert Margolis. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation. Office of Scientific and Technical Information (OSTI), ottobre 2015. http://dx.doi.org/10.2172/1227799.
Testo completoMargolis, R., R. Mitchell e K. Zweibel. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects. Office of Scientific and Technical Information (OSTI), settembre 2006. http://dx.doi.org/10.2172/893640.
Testo completoFeldman, David, Galen Barbose, Robert Margolis, Ryan Wiser, Naim Darghouth e Alan Goodrich. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections. Office of Scientific and Technical Information (OSTI), novembre 2012. http://dx.doi.org/10.2172/1172243.
Testo completoFeldman, D., G. Barbose, R. Margolis, R. Wiser, N. Darghouth e A. Goodrich. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections. Office of Scientific and Technical Information (OSTI), novembre 2012. http://dx.doi.org/10.2172/1059147.
Testo completoBackstrom, Robert, e David Dini. Firefighter Safety and Photovoltaic Systems Summary. UL Firefighter Safety Research Institute, novembre 2011. http://dx.doi.org/10.54206/102376/kylj9621.
Testo completoDavidson, Carolyn, Pieter Gagnon, Paul Denholm e Robert Margolis. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions. Office of Scientific and Technical Information (OSTI), ottobre 2015. http://dx.doi.org/10.2172/1225926.
Testo completoHuque, Aminul, Alex Magerko e Tanguy Hubert. Beneficial Integration of Energy Storage and Load Management with Photovoltaic (PV). Office of Scientific and Technical Information (OSTI), marzo 2023. http://dx.doi.org/10.2172/1959825.
Testo completoBelding, Scott, H. A. Walker e Andrea C. Watson. Will Solar Panels Help When the Power Goes Out? Planning for PV Resilience. Office of Scientific and Technical Information (OSTI), marzo 2020. http://dx.doi.org/10.2172/1606153.
Testo completo