Letteratura scientifica selezionata sul tema "Photonic computing"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Photonic computing".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Photonic computing"
Bocker, Richard P. "Photonic computing". Applied Optics 25, n. 18 (15 settembre 1986): 3019. http://dx.doi.org/10.1364/ao.25.003019.
Testo completoSun, Haoyang, Qifeng Qiao, Qingze Guan e Guangya Zhou. "Silicon Photonic Phase Shifters and Their Applications: A Review". Micromachines 13, n. 9 (12 settembre 2022): 1509. http://dx.doi.org/10.3390/mi13091509.
Testo completoXu, Zhihao, Tiankuang Zhou, Muzhou Ma, ChenChen Deng, Qionghai Dai e Lu Fang. "Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence". Science 384, n. 6692 (12 aprile 2024): 202–9. http://dx.doi.org/10.1126/science.adl1203.
Testo completoTanida, Jun, e Yusuke Ogura. "Photonic DNA computing". Review of Laser Engineering 33, Supplement (2005): 239–40. http://dx.doi.org/10.2184/lsj.33.239.
Testo completoKutluyarov, Ruslan V., Aida G. Zakoyan, Grigory S. Voronkov, Elizaveta P. Grakhova e Muhammad A. Butt. "Neuromorphic Photonics Circuits: Contemporary Review". Nanomaterials 13, n. 24 (14 dicembre 2023): 3139. http://dx.doi.org/10.3390/nano13243139.
Testo completoLi, Jiang, Chaoyue Liu, Haitao Chen, Jingshu Guo, Ming Zhang e Daoxin Dai. "Hybrid silicon photonic devices with two-dimensional materials". Nanophotonics 9, n. 8 (14 maggio 2020): 2295–314. http://dx.doi.org/10.1515/nanoph-2020-0093.
Testo completoDong, Bowei, Frank Brückerhoff-Plückelmann, Lennart Meyer, Jelle Dijkstra, Ivonne Bente, Daniel Wendland, Akhil Varri et al. "Partial coherence enhances parallelized photonic computing". Nature 632, n. 8023 (31 luglio 2024): 55–62. http://dx.doi.org/10.1038/s41586-024-07590-y.
Testo completoChetan, Anjna. "Integration of Photonic Circuits in Electronics for Enhanced Data Processing and Transfer". Journal for Research in Applied Sciences and Biotechnology 1, n. 2 (30 giugno 2022): 83–89. http://dx.doi.org/10.55544/jrasb.1.2.9.
Testo completoArgyris, Apostolos. "Photonic neuromorphic technologies in optical communications". Nanophotonics 11, n. 5 (19 gennaio 2022): 897–916. http://dx.doi.org/10.1515/nanoph-2021-0578.
Testo completoSun, Shuai, Mario Miscuglio, Xiaoxuan Ma, Zhizhen Ma, Chen Shen, Engin Kayraklioglu, Jeffery Anderson, Tarek El Ghazawi e Volker J. Sorger. "Induced homomorphism: Kirchhoff’s law in photonics". Nanophotonics 10, n. 6 (22 marzo 2021): 1711–21. http://dx.doi.org/10.1515/nanoph-2020-0655.
Testo completoTesi sul tema "Photonic computing"
Cao, Yameng. "Semiconductor light sources for photonic quantum computing". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/56619.
Testo completoBirchall, Patrick Matthew. "Fundamental advantages and practicalities of quantum-photonic metrology and computing". Thesis, University of Bristol, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.752791.
Testo completoVinckier, Quentin. "Analog bio-inspired photonic processors based on the reservoir computing paradigm". Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/237069.
Testo completoDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Denis-Le, Coarer Florian. "Neuromorphic computing using nonlinear ring resonators on a Silicon photonic chip". Electronic Thesis or Diss., CentraleSupélec, 2020. http://www.theses.fr/2020CSUP0001.
Testo completoWith the exponential volumes of digital data generated every day, there is a need for real-time, energy-efficient data processing. These challenges have motivated research on unconventional information processing. Among the existing techniques, machine learning is a very effective paradigm of cognitive computing. It provides, through many implementations including that of artificial neural networks, a set of techniques to teach a computer or physical system to perform complex tasks, such as classification, pattern recognition or signal generation. Reservoir computing was proposed about ten years ago to simplify the procedure for training the artificial neural network. Indeed, the network is kept fixed and only the connections between the reading layer and the output are driven by a simple linear regression. The internal architecture of a reservoir computer allows physical implementations, and several implementations have been proposed on different technological platforms, including photonic devices. On-chip reservoir computing is a very promising candidate to meet these challenges. The objective of this thesis work was to propose three different integrated reservoir architectures based on the use of resonant micro-rings. We have digitally studied its performance and highlighted data processing speeds of up to several tens of Gigabits per second with energy consumption of a few milliwatts
Mwamsojo, Nickson. "Neuromorphic photonic systems for information processing". Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS002.
Testo completoArtificial Intelligence has revolutionized the scientific community thanks to the advent of a robust computation workforce and Artificial Neural Neural Networks. However, the current implementation trends introduce a rapidly growing demand for computational power surpassing the rates and limitations of Moore's and Koomey's Laws, which implies an eventual efficiency barricade. To respond to these demands, bio-inspired techniques, known as 'neuro-morphic' systems, are proposed using physical devices. Of these systems, we focus on 'Reservoir Computing' and 'Coherent Ising Machines' in our works.Reservoir Computing, for instance, demonstrated its computation power such as the state-of-the-art performance of up to 1 million words per second using photonic hardware in 2017. We propose an automatic hyperparameter tuning algorithm for Reservoir Computing and give a theoretical study of its convergence. Moreover, we propose Reservoir Computing for early-stage Alzheimer's disease detection with a thorough assessment of the energy costs versus performance compromise. Finally, we confront the noisy image restoration problem by maximum a posteriori using an optoelectronic implementation of a Coherent Ising Machine
Alipour, Motaallem Seyed Payam. "Reconfigurable integrated photonic circuits on silicon". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51792.
Testo completoMohamed, Abdalla Mohab Sameh. "Reservoir computing in lithium niobate on insulator platforms". Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0051.
Testo completoThis work concerns time-delay reservoir computing (TDRC) in integrated photonic platforms, specifically the Lithium Niobate on Insulator (LNOI) platform. We propose a novel all-optical integrated architecture, which has only one tunable parameter in the form of a phase-shifter, and which can achieve good performance on several reservoir computing benchmark tasks. We also investigate the design space of this architecture and the asynchronous operation, which represents a departure from the more common framework of envisioning time-delay reservoir computers as networks in the stricter sense. Additionally, we suggest to leverage the all-optical scheme to dispense with the input mask, which allows the bypassing of an O/E/O conversion, often necessary to apply the mask in TDRC architectures. In future work, this can allow the processing of real-time incoming signals, possibly for telecom/edge applications. The effects of the output electronic readout on this architecture are also investigated. Furthermore, it is suggested to use the Pearson correlation as a simple way to design a reservoir which can handle multiple tasks at the same time, on the same incoming signal (and possibly on signals in different channels). Initial experimental work carried out at RMIT University is also reported. The unifying theme of this work is to investigate the performance possibilities with minimum photonic hardware requirements, relying mainly on LNOI’s low losses which enables the integration of the feedback waveguide, and using only interference and subsequent intensity conversion (through a photodetector) as the nonlinearity. This provides a base for future work to compare against in terms of performance gains when additional nonlinearities are considered (such as those of the LNOI platform), and when overall system complexity is increased by means of introducing more tunable parameters. Thus, the scope of this work is about the exploration of one particular unconventional computing approach (reservoir computing), using one particular technology (photonics), on one particular platform (lithium niobate on insulator). This work builds on the increasing interest of exploring unconventional computing, since it has been shown over the years that digital computers can no longer be a `one-size-fits-all', especially for emerging applications like artificial intelligence (AI). The future landscape of computing will likely encompass a rich variety of computing paradigms, architectures, and hardware, to meet the needs of rising specialized applications, and all in coexistence with digital computers which remain --- at least for now --- better suited for general-purpose computing
Baylon, Fuentes Antonio. "Ring topology of an optical phase delayed nonlinear dynamics for neuromorphic photonic computing". Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2047/document.
Testo completoNowadays most of computers are still based on concepts developed more than 60 years ago by Alan Turing and John von Neumann. However, these digital computers have already begun to reach certain physical limits of their implementation via silicon microelectronics technology (dissipation, speed, integration limits, energy consumption). Alternative approaches, more powerful, more efficient and with less consume of energy, have constituted a major scientific issue for several years. Many of these approaches naturally attempt to get inspiration for the human brain, whose operating principles are still far from being understood. In this line of research, a surprising variation of recurrent neural network (RNN), simpler, and also even sometimes more efficient for features or processing cases, has appeared in the early 2000s, now known as Reservoir Computing (RC), which is currently emerging new brain-inspired computational paradigm. Its structure is quite similar to the classical RNN computing concepts, exhibiting generally three parts: an input layer to inject the information into a nonlinear dynamical system (Write-In), a second layer where the input information is projected in a space of high dimension called dynamical reservoir and an output layer from which the processed information is extracted through a so-called Read-Out function. In RC approach the learning procedure is performed in the output layer only, while the input and reservoir layer are randomly fixed, being the main originality of RC compared to the RNN methods. This feature allows to get more efficiency, rapidity and a learning convergence, as well as to provide an experimental implementation solution. This PhD thesis is dedicated to one of the first photonic RC implementation using telecommunication devices. Our experimental implementation is based on a nonlinear delayed dynamical system, which relies on an electro-optic (EO) oscillator with a differential phase modulation. This EO oscillator was extensively studied in the context of the optical chaos cryptography. Dynamics exhibited by such systems are indeed known to develop complex behaviors in an infinite dimensional phase space, and analogies with space-time dynamics (as neural network ones are a kind of) are also found in the literature. Such peculiarities of delay systems supported the idea of replacing the traditional RNN (usually difficult to design technologically) by a nonlinear EO delay architecture. In order to evaluate the computational power of our RC approach, we implement two spoken digit recognition tests (classification tests) taken from a standard databases in artificial intelligence TI-46 and AURORA-2, obtaining results very close to state-of-the-art performances and establishing state-of-the-art in classification speed. Our photonic RC approach allowed us to process around of 1 million of words per second, improving the information processing speed by a factor ~3
Thraskias, Christos A., Eythimios N. Lallas, Niels Neumann, Laurent Schares, Bert J. Offrein, Ronny Henker, Dirk Plettemeier, Frank Ellinger, Juerg Leuthold e Ioannis Tomkos. "Survey of Photonic and Plasmonic Interconnect Technologies for Intra-Datacenter and High-Performance Computing Communications". Institute of Electrical and Electronics Engineers (IEEE), 2018. https://tud.qucosa.de/id/qucosa%3A35391.
Testo completoMarquez, Alfonzo Bicky. "Reservoir computing photonique et méthodes non-linéaires de représentation de signaux complexes : Application à la prédiction de séries temporelles". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD042/document.
Testo completoArtificial neural networks are systems prominently used in computation and investigations of biological neural systems. They provide state-of-the-art performance in challenging problems like the prediction of chaotic signals. Yet, the understanding of how neural networks actually solve problems like prediction remains vague; the black-box analogy is often employed. Merging nonlinear dynamical systems theory with machine learning, we develop a new concept which describes neural networks and prediction within the same framework. Taking profit of the obtained insight, we a-priori design a hybrid computer, which extends a neural network by an external memory. Furthermore, we identify mechanisms based on spatio-temporal synchronization with which random recurrent neural networks operated beyond their fixed point could reduce the negative impact of regular spontaneous dynamics on their computational performance. Finally, we build a recurrent delay network in an electro-optical setup inspired by the Ikeda system, which at first is investigated in a nonlinear dynamics framework. We then implement a neuromorphic processor dedicated to a prediction task
Libri sul tema "Photonic computing"
Brunner, Daniel, Miguel C. Soriano e Guy Van der Sande, a cura di. Photonic Reservoir Computing. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496.
Testo completoNicolescu, Gabriela, Sébastien Le Beux e Mahdi Nikdast. Photonic Interconnects for Computing Systems. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339076.
Testo completoP, Hotaling Steven, Pirich Andrew R e Society of Photo-optical Instrumentation Engineers., a cura di. Photonic quantum computing: 23-24 April 1997, Orlando, Florida. Bellingham, Wash., USA: SPIE, 1997.
Cerca il testo completoP, Hotaling Steven, Pirich Andrew R e Society of Photo-optical Instrumentation Engineers., a cura di. Photonic quantum computing II: 15-16 April 1998, Orlando, Florida. Bellingham, Wash., USA: SPIE, 1998.
Cerca il testo completoWang, Howard. Photonic Switches and Networks for High-Performance Computing and Data Centers. [New York, N.Y.?]: [publisher not identified], 2015.
Cerca il testo completo1966-, Iftekharuddin Khan M., Awwal Abdul A. S e Society of Photo-optical Instrumentation Engineers., a cura di. Photonic devices and algorithms for computing: 22-23 July 1999, Denver, Colorado. Bellingham, Wash., USA: SPIE, 1999.
Cerca il testo completo1966-, Iftekharuddin Khan M., Awwal Abdul A. S e Society of Photo-optical Instrumentation Engineers., a cura di. Photonic devices and algorithms for computing II: 2-3 August 2000, San diego, USA. Bellingham, Wash., USA: SPIE, 2000.
Cerca il testo completo1966-, Iftekharuddin Khan M., Awwal Abdul A. S e Society of Photo-optical Instrumentation Engineers., a cura di. Photonic devices and algorithms for computing III: 29-30 July, 2001, San Diego, USA. Bellingham, Wash: SPIE, 2001.
Cerca il testo completo1966-, Iftekharuddin Khan M., Awwal Abdul A. S e Society of Photo-optical Instrumentation Engineers., a cura di. Photonic devices and algorithms for computing VI: 2-3 August, 2004, Denver, Colorado, USA. Bellingham, Wash: SPIE, 2004.
Cerca il testo completo1966-, Iftekharuddin Khan M., Awwal Abdul A. S, Society of Photo-optical Instrumentation Engineers. e Boeing Company, a cura di. Photonic devices and algorithms for computing IV: 8-9 July, 2002, Seattle, Washington, USA. Bellingham, Washington: SPIE, 2002.
Cerca il testo completoCapitoli di libri sul tema "Photonic computing"
Binh, Le Nguyen. "Photonic Computing Processors". In Photonic Signal Processing, 107–66. Second edition. | Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429436994-4.
Testo completoChaurasiya, Rohit, e Devanshi Arora. "Photonic Quantum Computing". In Quantum and Blockchain for Modern Computing Systems: Vision and Advancements, 127–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04613-1_4.
Testo completoEasttom, Chuck. "Photonic Quantum Computing". In Hardware for Quantum Computing, 31–48. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66477-9_3.
Testo completoBrunner, Daniel, Piotr Antonik e Xavier Porte. "1. Introduction to novel photonic computing". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 1–32. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-001.
Testo completoOrtín, Silvia, Luis Pesquera, Guy Van der Sande e Miguel C. Soriano. "5. Time delay systems for reservoir computing". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 117–52. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-005.
Testo completoDambre, Joni. "2. Information processing and computation with photonic reservoir systems". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 33–52. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-002.
Testo completoKatumba, Andrew, Matthias Freiberger, Floris Laporte, Alessio Lugnan, Stijn Sackesyn, Chonghuai Ma, Joni Dambre e Peter Bienstman. "3. Integrated on-chip reservoirs". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 53–82. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-003.
Testo completoBrunner, Daniel, Julian Bueno, Xavier Porte, Sheler Maktoobi e Louis Andreoli. "4. Large scale spatiotemporal reservoirs". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 83–116. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-004.
Testo completoLarger, Laurent. "6. Ikeda delay dynamics as Reservoir processors". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 153–84. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-006.
Testo completoVan der Sande, Guy, e Miguel C. Soriano. "7. Semiconductor lasers as reservoir substrates". In Photonic Reservoir Computing, a cura di Daniel Brunner, Miguel C. Soriano e Guy Van der Sande, 185–204. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110583496-007.
Testo completoAtti di convegni sul tema "Photonic computing"
Youngblood, Nathan, Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang e John Bowers. "Non-reciprocal devices for in-memory photonic computing". In Frontiers in Optics, FTu1D.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.ftu1d.2.
Testo completoDe Marinis, L., P. S. Kincaid, G. Contestabile, S. Gupta e N. Andriolli. "Photonic Technologies for Analog Neuromorphic Computing". In 2024 IEEE Photonics Society Summer Topicals Meeting Series (SUM), 1–2. IEEE, 2024. http://dx.doi.org/10.1109/sum60964.2024.10614512.
Testo completoCastro, Bernard J. Giron, Christophe Peucheret e Francesco Da Ros. "Microring Resonator-based Photonic Reservoir Computing". In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648245.
Testo completoEngheta, Nader. "Metamaterial Photonic Processing and Computing Machines". In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 127. IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632286.
Testo completoChoi, Seou, Yannick Salamin, Charles Roques-Carmes, Rumen Dangovski, Di Luo, Zhuo Chen, Michael Horodynski, Jamison Sloan e Marin Soljačić. "Photonic Probabilistic Computing Leveraging Quantum Vacuum Noise". In CLEO: Science and Innovations, SF3J.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf3j.5.
Testo completoGhasemi, Mehrdad, Hassan Kaatuzian, Houshyar Noshad e Mahdi NoroozOliaei. "Quantum Photonic Computer Challenges: Quantum Decoherence, Quantum Error Correction (QEC), and Scalability". In Frontiers in Optics, JD4A.42. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jd4a.42.
Testo completoGaur, Prabhav, Chengkuan Gao, Karl Johnson, Shimon Rubin, Yeshaiahu Fainman e Tzu-Chien Hsueh. "Optimization of hybrid photonic electrical reservoir computing". In Photonic Computing: From Materials and Devices to Systems and Applications, a cura di Xingjie Ni e Wenshan Cai, 11. SPIE, 2024. http://dx.doi.org/10.1117/12.3027516.
Testo completoKari, Sadra Rahimi, Allison Hastings, Nicholas A. Nobile, Dominique Pantin, Vivswan Shah e Nathan Youngblood. "Integrated Coherent Photonic Crossbar Arrays for Efficient Optical Computing". In CLEO: Science and Innovations, SM4M.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4m.6.
Testo completoNakai, Makoto, e Isamu Takai. "Nonlinear Silicon Photonic Passive Device for Edge Computing". In CLEO: Science and Innovations, STh1K.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth1k.4.
Testo completoUchida, Atsushi. "Artificial Intelligence Using Complex Photonics: Decision Making and Reservoir Computing". In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.m2j.5.
Testo completoRapporti di organizzazioni sul tema "Photonic computing"
Hendry, Gilbert, Eric Robinson, Vitaliy Gleyzer, Johnnie Chan, Luca P. Carloni, Nadya Bliss e Keren Bergman. Circuit-Switched Memory Access in Photonic Interconnection Networks for High-Performance Embedded Computing. Fort Belvoir, VA: Defense Technical Information Center, luglio 2010. http://dx.doi.org/10.21236/ada532933.
Testo completoHogle, Craig, Megan Ivory, Daniel Lobser, Brandon Ruzic e Christopher DeRose. Three-Photon Optical Pumping for Trapped Ion Quantum Computing. Office of Scientific and Technical Information (OSTI), settembre 2021. http://dx.doi.org/10.2172/1854752.
Testo completoBossler, Kerry. Coupled Electron-Photon Monte Carlo Radiation Transport for Next-Generation Computing Systems. Office of Scientific and Technical Information (OSTI), settembre 2018. http://dx.doi.org/10.2172/1474024.
Testo completoHemmer, Philip, e Robert Armstrong. Fractal-Enhancement of Photon Band-Gap Cavities for Quantum Computing and Other Applications. Fort Belvoir, VA: Defense Technical Information Center, agosto 2005. http://dx.doi.org/10.21236/ada444845.
Testo completoGuha, Supratik, H. S. Philip Wong, Jean Anne Incorvia e Srabanti Chowdhury. Future Directions Workshop: Materials, Processes, and R&D Challenges in Microelectronics. Defense Technical Information Center, giugno 2022. http://dx.doi.org/10.21236/ad1188476.
Testo completoQuinn, Jarus W. Optical Computing. Organization of the 1993 Photonics Science Topical Meetings Held in Palm Springs, California on March 16 - 19, 1993. Technical Digest Series, Volume 7. Fort Belvoir, VA: Defense Technical Information Center, marzo 1993. http://dx.doi.org/10.21236/ada269025.
Testo completo