Letteratura scientifica selezionata sul tema "Phenotypic plasticity"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Phenotypic plasticity".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Phenotypic plasticity"
Nicotra, Adrienne B., e Amy Davidson. "Adaptive phenotypic plasticity and plant water use". Functional Plant Biology 37, n. 2 (2010): 117. http://dx.doi.org/10.1071/fp09139.
Testo completoBibi, Zubaira, Muhammad Junaid Maqsood, Ayesha Idrees, Hafisa Rafique, Aliza Amjad Butt, Rameesha Ali, Zunaira Arif e Mutie Un Nabi. "Exploring the Role of Phenotypic Plasticity in Plant Adaptation to Changing Climate: A Review". Asian Journal of Research in Crop Science 9, n. 1 (2 gennaio 2024): 1–9. http://dx.doi.org/10.9734/ajrcs/2024/v9i1241.
Testo completoNishiura, Naoto, e Kunihiko Kaneko. "Evolution of phenotypic fluctuation under host-parasite interactions". PLOS Computational Biology 17, n. 11 (9 novembre 2021): e1008694. http://dx.doi.org/10.1371/journal.pcbi.1008694.
Testo completoKaragic, Nidal, Axel Meyer e C. Darrin Hulsey. "Phenotypic Plasticity in Vertebrate Dentitions". Integrative and Comparative Biology 60, n. 3 (16 giugno 2020): 608–18. http://dx.doi.org/10.1093/icb/icaa077.
Testo completoKishida, Osamu, Yuuki Mizuta e Kinya Nishimura. "PHENOTYPIC PLASTICITY". Bulletin of the Ecological Society of America 87, n. 2 (aprile 2006): 106–7. http://dx.doi.org/10.1890/0012-9623(2006)87[106:pp]2.0.co;2.
Testo completoPhillips, K. "PHENOTYPIC PLASTICITY". Journal of Experimental Biology 209, n. 12 (15 giugno 2006): i—iii. http://dx.doi.org/10.1242/jeb.02324.
Testo completoCallahan, Hilary S., Heather Maughan e Ulrich K. Steiner. "Phenotypic Plasticity, Costs of Phenotypes, and Costs of Plasticity". Annals of the New York Academy of Sciences 1133, n. 1 (giugno 2008): 44–66. http://dx.doi.org/10.1196/annals.1438.008.
Testo completoFusco, Giuseppe, e Alessandro Minelli. "Phenotypic plasticity in development and evolution: facts and concepts". Philosophical Transactions of the Royal Society B: Biological Sciences 365, n. 1540 (27 febbraio 2010): 547–56. http://dx.doi.org/10.1098/rstb.2009.0267.
Testo completoZhang, Luna, Anqun Chen, Yanjiao Li, Duohui Li, Shiping Cheng, Liping Cheng e Yinzhan Liu. "Differences in Phenotypic Plasticity between Invasive and Native Plants Responding to Three Environmental Factors". Life 12, n. 12 (25 novembre 2022): 1970. http://dx.doi.org/10.3390/life12121970.
Testo completoWang, Ye, Huigan Xie, Tiechui Yang, Dan Gao e Xiwen Li. "Primary Investigation of Phenotypic Plasticity in Fritillaria cirrhosa Based on Metabolome and Transcriptome Analyses". Cells 11, n. 23 (30 novembre 2022): 3844. http://dx.doi.org/10.3390/cells11233844.
Testo completoTesi sul tema "Phenotypic plasticity"
Al-Mazrouai, Ahmed Mohammed. "Phenotypic plasticity in marine intertidal gastropods". Thesis, University of Plymouth, 2008. http://hdl.handle.net/10026.1/1973.
Testo completoGold, Leslie. "Phenotypic plasticity of wetland species of Carex". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0031/MQ64363.pdf.
Testo completoTibbits, Matthew Alan. "Scleractinian micromorphology : taxonomic value vs. phenotypic plasticity". Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2155.
Testo completoHooker, Oliver Edward. "The consequences of phenotypic plasticity on postglacial fishes". Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7794/.
Testo completoPascoal, Sónia Cristina Marques. "Nucella lapillus: imposex transcriptome analysis and phenotypic plasticity". Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/4267.
Testo completoO conhecimento de mecanismos de genómica funcional tem sido maioritariamente adquirido pela utilização de organismos modelo que são mantidos em condições laboratoriais. Contudo, estes organismos não reflectem as respostas a alterações ambientais. Por outro lado, várias espécies, ecologicamente bem estudadas, reflectem bem as interacções entre genes e ambiente mas que, das quais não existem recursos genéticos disponíveis. O imposex, caracterizado pela superimposição de caracteres sexuais masculinos em fêmeas, é induzido pelo tributilestanho (TBT) e trifenilestanho (TPT) e representa um dos melhores exemplos de disrupção endócrina com causas antropogénicas no ambiente aquático. Com o intuito de elucidar as bases moleculares deste fenómeno, procedeu-se à combinação das metodologias de pirosequenciação (sequenciação 454 da Roche) e microarrays (Agilent 4*180K) de forma a contribuir para um melhor conhecimento desta interacção gene-ambiente no gastrópode Nucella lapillus, uma espécie sentinela para imposex. O trancriptoma de N. lapillus foi sequenciado, reconstruído e anotado e posteriormente utilizado para a produção de um “array” de nucleótidos. Este array foi então utilizado para explorar níveis de expressão génica em resposta à contaminação por TBT. Os resultados obtidos confirmaram as hipóteses anteriormente propostas (esteróidica, neuroendócrina, retinóica) e adicionalmente revelou a existência de potenciais novos mecanismos envolvidos no fenómeno imposex. Evidência para alvos moleculares de disrupção endócrina não relacionados com funções reprodutoras, tais como, sistema imunitário, apoptose e supressores de tumores, foram identificados. Apesar disso, tendo em conta a forte componente reprodutiva do imposex, esta componente funcional foi a mais explorada. Assim, factores de transcrição e receptores nucleares lipofílicos, funções mitocondriais e actividade de transporte celular envolvidos na diferenciação de géneros estão na base de potenciais novos mecanismos associados ao imposex em N. lapillus. Em particular, foi identificado como estando sobre-expresso, um possível homólogo do receptor nuclear “peroxisome proliferator-activated receptor gamma” (PPARγ), cuja função na indução de imposex foi confirmada experimentalmente in vivo após injecção dos animais com Rosiglitazone, um conhecido ligando de PPARγ em vertebrados. De uma forma geral, os resultados obtidos mostram que o fenómeno imposex é um mecanismo complexo, que possivelmente envolve a cascata de sinalização envolvendo o receptor retinoid X (RXR):PPARγ “heterodimer” que, até à data não foi descrito em invertebrados. Adicionalmente, os resultados obtidos apontam para alguma conservação de mecanismos de acção envolvidos na disrupção endócrina em invertebrados e vertebrados. Finalmente, a informação molecular produzida e as ferramentas moleculares desenvolvidas contribuem de forma significativa para um melhor conhecimento do fenómeno imposex e constituem importantes recursos para a continuação da investigação deste fenómeno e, adicionalmente, poderão vir a ser aplicadas no estudo de outras respostas a alterações ambientais usando N. lapillus como organismo modelo. Neste sentido, N. lapillus foi também utilizada para explorar a adaptação na morfologia da concha em resposta a alterações naturais induzidas por acção das ondas e pelo risco de predação por caranguejos. O contributo da componente genética, plástica e da sua interacção para a expressão fenotípica é crucial para compreender a evolução de caracteres adaptativos a ambientes heterogéneos. A contribuição destes factores na morfologia da concha de N. lapillus foi explorada recorrendo a transplantes recíprocos e experiências laboratoriais em ambiente comum (com e sem influência de predação) e complementada com análises genéticas, utilizando juvenis provenientes de locais representativos de costas expostas e abrigadas da acção das ondas. As populações estudadas são diferentes geneticamente mas possuem o mesmo cariótipo. Adicionalmente, análises morfométricas revelaram plasticidade da morfologia da concha em ambas as direcções dos transplantes recíprocos e também a retenção parcial, em ambiente comum, da forma da concha nos indivíduos da F2, indicando uma correlação positiva (co-gradiente) entre heritabilidade e plasticidade. A presença de estímulos de predação por caranguejos estimulou a produção de conchas com labros mais grossos, de forma mais evidente em animais recolhidos de costas expostas e também provocou alterações na forma da concha em animais desta proveniência. Estes dados sugerem contra-gradiente em alterações provocadas por predação na morfologia da concha, na produção de labros mais grossos e em níveis de crescimento. O estudo das interacções gene-ambiente descritas acima demonstram a actual possibilidade de produzir recursos e conhecimento genómico numa espécie bem caracterizada ecologicamente mas com limitada informação genómica. Estes recursos permitem um maior conhecimento biológico desta espécie e abrirão novas oportunidades de investigação, que até aqui seriam impossíveis de abordar.
Our understanding of functional genomic mechanisms is largely acquired from model organisms through laboratory conditions of exposure. Yet, these laboratory models typically have little environmental relevance. Conversely, there are numerous “ecological” model species that present important geneenvironment interactions, but lack genomic resources. Imposex, the superimposition of male sexual characteristics in females, is caused by tributyltin (TBT) and triphenyltin (TPT) and provides among the most widely cited ecological examples of anthropogenically-induced endocrine disruption in aquatic ecosystems. To further elucidate the functional genomic basis of imposex, combinations of 454 Roche pyrosequencing and microarray technologies (Agilent 4*180K) were employed to elucidate the nature and extent of gene-environment interactions in the prosobranch gastropod, Nucella lapillus, a recognized sentinel for TBT-induced imposex. Following transcriptome characterization (de novo sequencing, assembly and annotation), microarray fabrication and competitive hybridizations, differential gene expression analyses provided support for previously suggested hypotheses underpinning imposex (steroid, neuroendocrine, retinoid), but also revealed potential new mechanisms. Evidence for endocrine disruption (ED) targets such as the immune system, apoptosis and tumour suppressors other than reproduction-related functions were found; however, given the ED nature of imposex, primary focus was on gender-differentiation pathways. Among these, transcription factors and lipophilic nuclear receptors as transducers of TBT toxicity along with mitochondrial functions and deregulation in transport activity suggested new putative mechanisms for the TBT-induced imposex in N. lapillus. Particularly, up-regulation of a putative nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) homolog was evident, and its role was further confirmed by inducing imposex in vivo using Rosiglizatone, a well-known vertebrate PPARγ ligand. Our analyses show that TBT-induced imposex is a complex mechanism, but is likely to act through the retinoid X receptor (RXR):PPARγ heterodimer signalling pathway, hitherto not described in invertebrates. Moreover, collectively, our findings support a commonality of signalling between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption. The genomic resources generated here largely contribute to the molecular understanding of imposex, yielding valuable insights for further examination of responses to TBT contamination exposure. Additionally, we anticipate that the new genomic resources described herein will contribute to the further exploration of adaptive responses of dogwhelks to environmental variation. N. lapillus was also used to explore adaptive shell shape morphology in response to natural variation in wave-action and crab predation. Knowledge of the contributions of genotype, plasticity and their interaction to phenotypic expression is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed contributions of the above factors by reciprocal transplantation of snails between two shores differing in exposure to wave action and predation, and rearing snails of the same provenance in a laboratory common garden experiment with crab-predation odour, complemented by genetic analysis. The two target populations are genetically different but maintain the same karyotype. Truss-length and morphometric analyses revealed plasticity of shell shape in reciprocal transplants, but also the partial retention of parental shape by F2 snails in common garden controls, indicating co-gradient variation between heritable and plasticity components. Crab-predation odour influenced shell shape of snails from exposed-site origin and stimulated the production of thicker shell lips with greater response in snails of exposed-site ancestry. We interpret these data as countergradient variation on predator-induced changes in shell shape and increased thickening of the shell lip as well as on growth rates. The above exploration of gene-environment interactions demonstrates the feasibility, insights and novel opportunities that can now be addressed in a species that is well characterised ecologically, but hitherto constrained by the general lack of genomic tools and archived resources. Notably, a greater focus on detailed responses of a single species facilitates the comparative approach, as illustrated by the apparent commonality in regulation of endocrine disruption processes in invertebrates and vertebrates.
FCT; FSE - SFRH/BD/27711/2006
Miner, Benjamin G. "Evolution of phenotypic plasticity insights from echinoid larvae /". Connect to this title online, 2003. http://purl.fcla.edu/fcla/etd/UFE0001450.
Testo completoMeyer, Aret. "Phenotypic plasticity of phages with diverse genome sizes". Diss., University of Pretoria, 2006. http://hdl.handle.net/2263/26157.
Testo completoDissertation (MSc (Genetics))--University of Pretoria, 2006.
Genetics
unrestricted
Leone, Stacy E. "Predator induced plasticity in barnacle shell morphology /". Abstract Full Text (HTML) Full Text (PDF), 2008. http://eprints.ccsu.edu/archive/00000496/02/1952FT.htm.
Testo completoThesis advisor: Jeremiah Jarrett. "... in partial fulfillment of the requirements for the degree of Master of Arts in Biology." Includes bibliographical references (leaves 27-29). Also available via the World Wide Web.
Crispo, Erika. "Interplay among phenotypic plasticity, local adaptation, and gene flow". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92201.
Testo completoKraft, Peter G. "The evolution of predator-induced phenotypic plasticity in tadpoles /". [St. Lucia, Qld.], 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18434.pdf.
Testo completoLibri sul tema "Phenotypic plasticity"
J, DeWitt Thomas, e Scheiner Samuel M. 1956-, a cura di. Phenotypic plasticity: Functional and conceptual approaches. New York: Oxford University Press, 2004.
Cerca il testo completovan, Gils Jan A., a cura di. The flexible phenotype: Towards a body-centred integration of ecology, physiology, and behaviour. Oxford: Oxford University Press, 2010.
Cerca il testo completoDouglas, Whitman, e Ananthakrishnan T. N. 1925-, a cura di. Phenotypic plasticity of insects: Mechanisms and consequences. Enfield, N.H: Science Publishers, 2008.
Cerca il testo completoTrainor, F. R. Biol ogical aspects of Scenedesmus (Chlorophyceae) - phenotypic plasticity. Berlin: J. Cramer, 1998.
Cerca il testo completoKammenga, Jan Edward. Phenotypic plasticity and fitness consequences in nematodes exposed to toxicants. Wageningen: [s.n.], 1995.
Cerca il testo completoReimer, Olof. Predator-induced phenotypic plasticity in the marine mussel Mytilus edulis. Stockholm: Univ., 1999.
Cerca il testo completoRocky Mountain Research Station (Fort Collins, Colo.), a cura di. Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings. Fort Collins, CO: U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2010.
Cerca il testo completoGluckman, Peter (Peter D.), 1949- author, a cura di. Plasticity, Robustness, Development and Evolution. Cambridge: Cambridge University Press, 2011.
Cerca il testo completoKrishnaraj, Rangathilakam. Phenotypic plasticity of Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae) and its implications for mass rearing. Ottawa: National Library of Canada, 2000.
Cerca il testo completoD, Varfolomeyev S., e Zaikov Gennadiĭ Efremovich, a cura di. Molecular polymorphism of man: Structural and functional individual multiformity of biomacromolecules. Hauppauge, NY: Nova Science Publishers, 2009.
Cerca il testo completoCapitoli di libri sul tema "Phenotypic plasticity"
Frank, J. Howard, J. Howard Frank, Michael C. Thomas, Allan A. Yousten, F. William Howard, Robin M. Giblin-davis, John B. Heppner et al. "Phenotypic Plasticity". In Encyclopedia of Entomology, 2842. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_2900.
Testo completoSnell-Rood, Emilie, e Meredith Steck. "Phenotypic Plasticity". In Encyclopedia of Personality and Individual Differences, 3911–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-24612-3_1557.
Testo completoSnell-Rood, Emilie, e Meredith Steck. "Phenotypic Plasticity". In Encyclopedia of Personality and Individual Differences, 1–5. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28099-8_1557-1.
Testo completoLuzete, J., I. F. Oliveira, L. A. Ferreira e Julia Klaczko. "Phenotypic Plasticity". In Encyclopedia of Animal Cognition and Behavior, 5211–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_2118.
Testo completoLuzete, J., I. F. Oliveira, L. A. Ferreira e J. Klaczko. "Phenotypic Plasticity". In Encyclopedia of Animal Cognition and Behavior, 1–4. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-47829-6_2118-1.
Testo completoHughes, Kimberly A., Mary H. Burleson e F. Helen Rodd. "Is Phenotypic Plasticity Adaptive?" In The Biodemography of Human Reproduction and Fertility, 23–42. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1137-3_2.
Testo completoPatterson, P. H. "Phenotypic Plasticity and Neural Grafting". In Research and Perspectives in Neurosciences, 28–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84842-1_4.
Testo completoGeng, Y., L. Gao e J. Yang. "Epigenetic Flexibility Underlying Phenotypic Plasticity". In Progress in Botany, 153–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30967-0_5.
Testo completoPigliucci, Massimo. "Phenotypic Plasticity". In Evolutionary Ecology. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195131543.003.0009.
Testo completoWindig, Jack J., Carolien G. F. De Kovel e Gerdien De Jong. "Genetics and Mechanics of Plasticity". In Phenotypic Plasticity, 31–49. Oxford University PressNew York, NY, 2004. http://dx.doi.org/10.1093/oso/9780195138962.003.0003.
Testo completoAtti di convegni sul tema "Phenotypic plasticity"
Tibbits, Matthew A. "THE MORPHOMETRICS OF PHENOTYPIC PLASTICITY". In 67th Annual Southeastern GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018se-312174.
Testo completoAshlock, Daniel, EunYoun Kim e Amanda Saunders. "Prisoner’s Dilemma Agents with Phenotypic Plasticity". In 2019 IEEE Conference on Games (CoG). IEEE, 2019. http://dx.doi.org/10.1109/cig.2019.8848067.
Testo completoLalejini, Alexander, e Charles Ofria. "The Evolutionary Origins of Phenotypic Plasticity". In Proceedings of the Artificial Life Conference 2016. Cambridge, MA: MIT Press, 2016. http://dx.doi.org/10.1162/978-0-262-33936-0-ch063.
Testo completoLalejini, Alexander, e Charles Ofria. "The Evolutionary Origins of Phenotypic Plasticity". In Proceedings of the Artificial Life Conference 2016. Cambridge, MA: MIT Press, 2016. http://dx.doi.org/10.7551/978-0-262-33936-0-ch063.
Testo completoKebede, F. G., H. Komen, T. Dessie, O. Hanotte, S. Kemp, C. Pita Barros, R. Crooijmans, M. Derks, S. W. Alemu e J. W. M. Bastiaansen. "421. Exploiting phenotypic plasticity in animal breeding". In World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_421.
Testo completoAshlock, Daniel, Wendy Ashlock e James Montgomery. "Implementing Phenotypic Plasticity with an Adaptive Generative Representation". In 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2019. http://dx.doi.org/10.1109/cibcb.2019.8791496.
Testo completoSauder, Candice Anne Marcum, Jillian E. Koziel, MiRan Choi, Melanie J. Fox, Sunil Badve, Rachel J. Blosser, Theresa Mathieson et al. "Abstract 3322: Phenotypic plasticity in the normal breast". In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3322.
Testo completoSauder, CAM, JE Koziel, M. Choi, MJ Fox, S. Badve, RJ Blosser, T. Mathieson et al. "P5-05-02: Phenotypic Plasticity in the Normal Breast." In Abstracts: Thirty-Fourth Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 6‐10, 2011; San Antonio, TX. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/0008-5472.sabcs11-p5-05-02.
Testo completoBapat, Sharmila A., Sagar Varankar e Swapnil Kamble. "Abstract 2017: Phenotypic plasticity and class switching in ovarian cancer". In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2017.
Testo completoRichard, Gautier. "Epigenetic regulation of aphid phenotypic plasticity of the reproductive mode". In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.89542.
Testo completoRapporti di organizzazioni sul tema "Phenotypic plasticity"
Koehn, A. C., G. I. McDonald, D. L. Turner e D. L. Adams. Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2010. http://dx.doi.org/10.2737/rmrs-rp-79.
Testo completoMeiri, Noam, Michael D. Denbow e Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, novembre 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Testo completoArmstrong, Andrew J. Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype. Fort Belvoir, VA: Defense Technical Information Center, luglio 2014. http://dx.doi.org/10.21236/ada612312.
Testo completoArmstrong, Andrew. Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype. Fort Belvoir, VA: Defense Technical Information Center, luglio 2012. http://dx.doi.org/10.21236/ada566209.
Testo completo