Letteratura scientifica selezionata sul tema "Pharmacokinetic interactions"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Pharmacokinetic interactions".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Pharmacokinetic interactions"
Taylor, David. "Pharmacokinetic interactions involving clozapine". British Journal of Psychiatry 171, n. 2 (agosto 1997): 109–12. http://dx.doi.org/10.1192/bjp.171.2.109.
Testo completoKeirns, J., T. Sawamoto, M. Holum, D. Buell, W. Wisemandle e A. Alak. "Steady-State Pharmacokinetics of Micafungin and Voriconazole after Separate and Concomitant Dosing in Healthy Adults". Antimicrobial Agents and Chemotherapy 51, n. 2 (20 novembre 2006): 787–90. http://dx.doi.org/10.1128/aac.00673-06.
Testo completoSoyata, Amelia, Aliya Nur Hasanah e Taofik Rusdiana. "Interaction of Warfarin with Herbs Based on Pharmacokinetic and Pharmacodynamic Parameters". Indonesian Journal of Pharmaceutics 2, n. 2 (5 giugno 2020): 69. http://dx.doi.org/10.24198/idjp.v2i2.27289.
Testo completoCostache, Irina-Iuliana, Anca Miron, Monica Hăncianu, Viviana Aursulesei, Alexandru Dan Costache e Ana Clara Aprotosoaie. "Pharmacokinetic Interactions between Cardiovascular Medicines and Plant Products". Cardiovascular Therapeutics 2019 (2 settembre 2019): 1–19. http://dx.doi.org/10.1155/2019/9402781.
Testo completoERESHEFSKY, LARRY, STEPHEN R. SAKLAD, MARK D. WATANABE, CHESTER M. DAVIS e MICHAEL W. JANN. "Thiothixene Pharmacokinetic Interactions". Journal of Clinical Psychopharmacology 11, n. 5 (ottobre 1991): 296???301. http://dx.doi.org/10.1097/00004714-199110000-00004.
Testo completoHartshorn, Edward A. "Pharmacokinetic Drug Interactions". Journal of Pharmacy Technology 1, n. 5 (settembre 1985): 193–99. http://dx.doi.org/10.1177/875512258500100505.
Testo completoEichelbaum, Michel. "Pharmacokinetic Drug Interactions". Journal of Clinical Pharmacology 26, n. 6 (8 luglio 1986): 469–73. http://dx.doi.org/10.1002/j.1552-4604.1986.tb03560.x.
Testo completoPukrittayakamee, Sasithon, Joel Tarning, Podjanee Jittamala, Prakaykaew Charunwatthana, Saranath Lawpoolsri, Sue J. Lee, Warunee Hanpithakpong et al. "Pharmacokinetic Interactions between Primaquine and Chloroquine". Antimicrobial Agents and Chemotherapy 58, n. 6 (31 marzo 2014): 3354–59. http://dx.doi.org/10.1128/aac.02794-13.
Testo completoCohen, Lawrence J., e C. Lindsay DeVane. "Clinical Implications of Antidepressant Pharmacokinetics and Pharmacogenetics". Annals of Pharmacotherapy 30, n. 12 (dicembre 1996): 1471–80. http://dx.doi.org/10.1177/106002809603001216.
Testo completoMarvanova, Marketa. "Pharmacokinetic characteristics of antiepileptic drugs (AEDs)". Mental Health Clinician 6, n. 1 (1 gennaio 2016): 8–20. http://dx.doi.org/10.9740/mhc.2015.01.008.
Testo completoTesi sul tema "Pharmacokinetic interactions"
McArdle, Elizabeth Karen. "Pharmacokinetic interactions of constituents of cannabis extracts". Thesis, University of Aberdeen, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415480.
Testo completoRaaska, Kari. "Pharmacokinetic interactions of clozapine in hospitalized patients". Helsinki : University of Helsinki, 2003. http://ethesis.helsinki.fi/julkaisut/laa/kliin/vk/raaska/.
Testo completoLundahl, Anna. "In vivo Pharmacokinetic Interactions of Finasteride and Identification of Novel Metabolites". Doctoral thesis, Uppsala universitet, Institutionen för farmaci, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-129362.
Testo completoAdedoyin, A. P. "Pharmacokinetic drug-drug interactions : inhibition and induction studies in the rat". Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376236.
Testo completoElsherbiny, Doaa. "Pharmacokinetic drug-drug interactions in the management of malaria, HIV and tuberculosis". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8426.
Testo completoYadav, Jaydeep. "EVALUATING PHARMACOKINETIC DRUG-DRUG INTERACTIONS DUE TO TIME DEPENDENT INHIBITION OF CYTOCHROME P450s". Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/524248.
Testo completoPh.D.
Time-dependent inactivation (TDI) of CYPs is a leading cause of clinical drug-drug interactions (DDIs). Current methods tend to over-predict DDIs. In this study, a numerical approach was used to model complex CYP3A TDI in human liver microsomes. Inhibitors evaluated include troleandomycin (TAO), erythromycin (ERY), verapamil (VER), Paroxetine (PAR), itraconazole (ITZ) and diltiazem (DTZ) along with primary metabolites N-demethyl erythromycin (NDE), norverapamil (NV), and N-desmethyl diltiazem (MA). Complexities incorporated in the models included multiple binding kinetics, quasi-irreversible inactivation, sequential metabolism, inhibitor depletion, and membrane partitioning. The different factors affecting TDI kinetics were evaluated such as lipid partitioning, inhibitor depletion, presence of transporters. The inactivation parameters obtained from numerical method were incorporated into static in-vitro – in-vivo correlation (IVIVC) models to predict clinical DDIs. For 123 clinically observed DDIs, using a hepatic CYP3A synthesis rate constant of 0.000146 min-1, the average fold difference between observed and predicted DDIs was 2.97 for the standard replot method and 1.66 for the numerical method. Similar results were obtained using a synthesis rate constant of 0.00032 min-1. These results suggest that numerical methods can successfully model complex in-vitro TDI kinetics and that the resulting DDI predictions are more accurate than those obtained with the standard replot approach. Chapter one presents the detailed introduction along with the hypothesis and significance of the project. Chapter 2 includes the development of the bioanalytical method for quantitation of various compounds which includes inactivators and their primary metabolites. Chapter 3 entails the discussion on in-vivo studies in rats involving TDI mediated DDI studies. Chapter 4 discusses the in-vitro studies and use of the numerical method for evaluation of TDI kinetics. Chapter 5 and chapter 6 provides discussion on the impact of inhibitor depletion and partitioning of TDI kinetics and how these two could lead to misinterpretation of TDI results. Chapter 6 also provides a discussion on how transporters could affect TDI results mainly from hepatocyte studies. Chapter 7 involves prediction of TDI mediated DDI using static modeling. Chapter 8 is a case study on bosentan involving induction mediated DDI.
Temple University--Theses
Cherkaoui, Rbati Mohammed. "Mathematical and physical systems biology : application to pharmacokinetic drug-drug interactions and tumour growth". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33719/.
Testo completoNaghmeh, Jabarizadekivi. "A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations". University of Sydney, 2008. http://hdl.handle.net/2123/2471.
Testo completoClozapine is a drug of choice for treatment of refractory schizophrenia, which is primarily metabolized by Cytochrome P450 1A2 (CYP1A2). Norclozapine is its main metabolite. There are reports of wide ranging gastrointestinal side effects associated with clozapine therapy, that result in concomitant administration of proton pump inhibitors to treat acid-related disorders. Omeprazole is an established CYP1A2 inducer, while an in vitro study has shown that rabeprazole is much less potent in this regard. There is no available information about the impact of rabeprazole on CYP1A2 activity in patients. Firstly, this information is essential when prescriptions are changed from omeprazole to rabeprazole to reduce medication costs. Therefore, the aim of this study was to compare the effects of rabeprazole and omeprazole on CYP1A2-mediated clearance (CL/F) of clozapine. Secondly, the effective dosage of clozapine varies widely among patients, making it necessary to individualize drug therapy with clozapine. The reason for dosage variation could be due to the influence of patient-related variables on clozapine plasma concentrations. Therefore, another aim of this study was to investigate the relationship between patient variables, such as age, gender, cigarette smoke, weight and body mass index and clozapine clearance (CL/F). A cross-over study design was used for this study. Twenty patients from Macquarie hospital who were receiving clozapine and rabeprazole (with no other interacting medications) were recruited in this study. Blood samples were taken at 30 min, 1 hr, 2 hr and 12 hr after a dose of clozapine. Rabeprazole was then replaced with omeprazole. After at least 1 month blood samples were again collected at the above corresponding intervals after clozapine. The plasma concentrations of clozapine and norclozapine were determined by high performance liquid chromatography. Abbottbase Pharmacokinetic Systems Software, which utilizes Bayesian forecasting, was used to estimate pharmacokinetic parameters of clozapine. The ratio of plasma norclozapine/clozapine concentrations at trough level was used to reflect CYP1A2 activity. No difference was observed in clozapine clearance (CL/F) and CYP1A2 activity during concurrent therapy with either rabeprazole or omeprazole. According to some studies CYP1A2 induction by omeprazole is dose dependent. Furthermore, since rabeprazole is a weak CYP1A2 inducer in vitro, we conclude that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40 mg/day). Hence, replacement of omeprazole with rabeprazole at conventional therapeutic dosages (20 or 40 mg daily) offers no advantages in the management of patients with schizophrenia on clozapine and no dose adjustment is required. Consistent with previous studies, clozapine concentrations were found to be significantly lower in cigarette smokers due to CYP1A2 induction. No relationship was found between age, gender, or weight and clozapine clearance (CL/F). However, body mass index showed a significant negative correlation with clozapine clearance (CL/F). Since weight gain and lipid accumulation are common side effects of clozapine they may be associated with a reduction of CYP1A2 activity and clozapine clearance (CL/F). Moreover, high lipoprotein levels may decrease the unbound fraction of clozapine and decrease the availability of clozapine for oxidation by cytochrome P450 enzymes. Therefore, it is concluded that omeprazole and rabeprazole may not induce CYP1A2 activity when used at conventional therapeutic dosage (<40mg/day). Hence, replacement of omeprazole with rabeprazole does not require the dose of clozapine to be adjusted. Moreover, the negative correlation between clozapine clearance (CL/F) and BMI is informative. Further studies are now required to clarify the relationship between BMI, lipoprotein levels and clozapine clearance in patients with schizophrenia.
Naghmeh, Jabarizadekivi. "A Comparison of the Effect of Omeprazole and Rabeprazole on Clozapine Serum Concentrations". Thesis, The University of Sydney, 2007. http://hdl.handle.net/2123/2471.
Testo completoSalem, Farzaneh. "Applications of physiologically based pharmacokinetic modelling to prediction of the likelihood of metabolic drug interactions in paediatric population and studying disparities in pharmacokinetics between children and adults". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/applications-of-physiologically-based-pharmacokinetic-modelling-to-prediction-of-the-likelihood-of-metabolic-drug-interactions-in-paediatric-population-and-studying-disparities-in-pharmacokinetics-between-children-and-adults(1fdefe9a-037a-4738-b92a-5904a60960db).html.
Testo completoLibri sul tema "Pharmacokinetic interactions"
Kiang, Tony K. L., Kyle John Wilby e Mary H. H. Ensom. Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10527-7.
Testo completoKiang, Tony K. L., Kyle John Wilby e Mary H. H. Ensom, a cura di. Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antiretroviral Drugs. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2113-8.
Testo completoBartle, W. R., V. Braun, J. M. Dietschy, Y. Emori, M. Hagiwara, H. Hidaka, S. Imajoh et al. Regulation of Plasma Low Density Lipoprotein Levels Biopharmacological Regulation of Protein Phosphorylation Calcium-Activated Neutral Protease Microbial Iron Transport Pharmacokinetic Drug Interactions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72902-7.
Testo completoDavid, Rodrigues A., a cura di. Drug-drug interactions. New York: M. Dekker, 2002.
Cerca il testo completoDavid, Rodrigues A., a cura di. Drug-drug interactions. 2a ed. New York: Informa Healthcare, 2008.
Cerca il testo completoHuang, L. Evaluation of the potential pharmacokinetic interaction between naproxen and zidovudine. [Ottawa: Ottawa General Hospital, 1991.
Cerca il testo completoMultiple chemical interactions. Chelsea, Mich: Lewis Publishers, 1991.
Cerca il testo completoRitschel, W. A. Handbook of basic pharmacokinetics-- including clinical applications. 6a ed. Washington, D.C: American Pharmacists Association, 2004.
Cerca il testo completoRitschel, W. A. Handbook of basic pharmacokinetics ... including clinical applications. 7a ed. Washington, D.C: American Pharmacists Association, 2009.
Cerca il testo completoHandbook of basic pharmacokinetics-- including clinical applications. 3a ed. Hamilton, IL: Drug Intelligence Publications, 1986.
Cerca il testo completoCapitoli di libri sul tema "Pharmacokinetic interactions"
Bartle, W. R., S. E. Walker e N. E. Winslade. "Pharmacokinetic Drug Interactions". In Progress in Clinical Biochemistry and Medicine, 101–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72902-7_5.
Testo completoWittwer, Erica D., e Wayne T. Nicholson. "Pharmacokinetic Interactions: Core Concepts". In A Case Approach to Perioperative Drug-Drug Interactions, 15–22. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-7495-1_3.
Testo completoMukherjee, Biswajit. "Pharmacokinetic Drug–Drug Interactions". In Pharmacokinetics: Basics to Applications, 145–55. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8950-5_7.
Testo completoRenton, Kenneth W. "Cytokines and Pharmacokinetic Drug Interactions". In Methods in Pharmacology and Toxicology, 275–96. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-350-9_14.
Testo completoKiang, Tony K. L., Kyle John Wilby e Mary H. H. Ensom. "Pharmacokinetic Drug Interactions Affecting Antimalarials". In Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials, 27–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10527-7_4.
Testo completoMarkowitz, John S., e Kennerly S. Patrick. "Pharmacokinetic and Pharmacodynamic Drug Interactions". In Attention Deficit Hyperactivity Disorder, 529–50. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-891-9:529.
Testo completoHuang, Shiew-Mei. "Drug-Drug Interactions". In Applications of Pharmacokinetic Principles in Drug Development, 307–31. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4419-9216-1_10.
Testo completoLewis, D. F. V. "Modelling Human Cytochrome P450-Substrate Interactions". In Pharmacokinetic Challenges in Drug Discovery, 235–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04383-7_12.
Testo completoIeuter, Rachel C. "Pharmacokinetic Drug-Drug Interactions with Warfarin". In Oral Anticoagulation Therapy, 221–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54643-8_32.
Testo completoBack, D. J., e M. L’E Orme. "Pharmacokinetic Drug Interactions with Oral Contraceptives". In Steroid Contraceptives and Women’s Response, 103–23. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2445-8_10.
Testo completoAtti di convegni sul tema "Pharmacokinetic interactions"
Moitra, Abha, Ravi Palla, Luis Tari e Mukkai Krishnamoorthy. "Semantic Inference for Pharmacokinetic Drug-Drug Interactions". In 2014 IEEE International Conference on Semantic Computing (ICSC). IEEE, 2014. http://dx.doi.org/10.1109/icsc.2014.36.
Testo completoEgenlauf, Benjamin, Johanna Ohnesorge, Satenik Harutyunova, Nicola Benjamin, Christine Fischer, Yeliz Enderle, Jürgen Burhenne et al. "Pharmacokinetic interactions in different combinations of pulmonary arterial hypertension treatment". In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa2397.
Testo completoKulanthaivel, Palaniappan, Daruka Mahadevan, P. Kellie Turner, Jane Royalty, Wee Teck Ng, Ping Yi, Jessica Rehmel, Kenneth Cassidy e Jill Chappell. "Abstract CT153: Pharmacokinetic drug interactions between abemaciclib and CYP3A inducers and inhibitors". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-ct153.
Testo completoHunta, Sathien, e Panchit Longpradit. "Pharmacokinetic simulation for prediction of drug-drug interactions based on agent based modeling". In 2018 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, 2018. http://dx.doi.org/10.1109/icdamt.2018.8376508.
Testo completoKOLCHINSKY, A., A. LOURENÇO, L. LI e L. M. ROCHA. "EVALUATION OF LINEAR CLASSIFIERS ON ARTICLES CONTAINING PHARMACOKINETIC EVIDENCE OF DRUG-DRUG INTERACTIONS". In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814447973_0040.
Testo completoSchneider, Elena, Patrick Hanafin e Gauri Rao. "A retrospective observational study: Bidirectional pharmacokinetic interactions between ivacaftor-lumacaftor in cystic fibrosis". In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.362.
Testo completoPawaskar, Dipti K., Robert Straubinger, Gerald Fetterly, Wen Ma e William Jusko. "Abstract 27: Physiologically based pharmacokinetic model for interactions of sorafenib and everolimus in mice". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-27.
Testo completoYang, Xiaoxia, Hofmeister C. Craig, Darlene M. Rozewski, Seungsoo Lee, Ping Chen, Amy J. Johnson, Zhongfa Liu et al. "Abstract 5473: The contribution of P-glycoprotein to clinical pharmacokinetic interactions between lenalidomide and temsirolimus". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-5473.
Testo completoSidharta, P. N., P. L. M. van Giersbergen, Michael Wolzt e Jasper Dingemanse. "Lack Of Clinically Relevant Pharmacokinetic Interactions Between The Dual Endothelin Receptor Antagonist Macitentan And Sildenafil In Healthy Subjects". In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a4802.
Testo completoGeorges, G., A. Lucardie, C. Garofalo, C. Beaudot e M. Cella. "Pharmacokinetic/Pharmacodynamic Interactions Between Extrafine Beclomethasone Dipropionate and Formoterol Fumarate Components of a Fixed-Dose Combination for Asthma and COPD". In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4528.
Testo completo