Segui questo link per vedere altri tipi di pubblicazioni sul tema: Permutation groups.

Articoli di riviste sul tema "Permutation groups"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Permutation groups".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Niemenmaa, Markku. "Decomposition of Transformation Groups of Permutation Machines". Fundamenta Informaticae 10, n. 4 (1 ottobre 1987): 363–67. http://dx.doi.org/10.3233/fi-1987-10403.

Testo completo
Abstract (sommario):
By a permutation machine we mean a triple (Q,S,F), where Q and S are finite sets and F is a function Q × S → Q which defines a permutation on Q for every element from S. These permutations generate a permutation group G and by considering the structure of G we can obtain efficient ways to decompose the transformation group (Q,G). In this paper we first consider the situation where G is half-transitive and after this we show how to use our result in the general non-transitive case.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Burns, J. M., B. Goldsmith, B. Hartley e R. Sandling. "On quasi-permutation representations of finite groups". Glasgow Mathematical Journal 36, n. 3 (settembre 1994): 301–8. http://dx.doi.org/10.1017/s0017089500030901.

Testo completo
Abstract (sommario):
In [6], Wong defined a quasi-permutation group of degree n to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology derives from the fact that if G is a finite group of permutations of a set ω of size n, and we think of G as acting on the complex vector space with basis ω, then the trace of an element g ∈ G is equal to the number of points of ω fixed by g. In [6] and [7], Wong studied the extent to which some facts about permutation groups generalize to the quasi-permutation group situation. Here we investigate further the analogy between permutation groups and quasipermutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. We shall often prefer to work over the rational field rather than the complex field.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bigelow, Stephen. "Supplements of bounded permutation groups". Journal of Symbolic Logic 63, n. 1 (marzo 1998): 89–102. http://dx.doi.org/10.2307/2586590.

Testo completo
Abstract (sommario):
AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise stabiliser G{Δ} acts as the full symmetric group on Ω ∖ Δ. However I have found a mistake in their proof. The aim of this paper is to examine conditions under which Macpherson and Neumann's claim holds, as well as conditions under which a counterexample can be constructed. In the process we will discover surprising links with cardinal arithmetic and Shelah's recently developed pcf theory.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Cohen, Stephen D. "Permutation polynomials and primitive permutation groups". Archiv der Mathematik 57, n. 5 (novembre 1991): 417–23. http://dx.doi.org/10.1007/bf01246737.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Tovstyuk, K. D., C. C. Tovstyuk e O. O. Danylevych. "The Permutation Group Theory and Electrons Interaction". International Journal of Modern Physics B 17, n. 21 (20 agosto 2003): 3813–30. http://dx.doi.org/10.1142/s0217979203021812.

Testo completo
Abstract (sommario):
The new mathematical formalism for the Green's functions of interacting electrons in crystals is constructed. It is based on the theory of Green's functions and permutation groups. We constructed a new object of permutation groups, which we call double permutation (DP). DP allows one to take into consideration the symmetry of the ground state as well as energy and momentum conservation in every virtual interaction. We developed the classification of double permutations and proved the theorem, which allows the selection of classes of associated double permutations (ADP). The Green's functions are constructed for series of ADP. We separate in the DP the convolving columns by replacing the initial interaction between the particles with the effective interaction. In convoluting the series for Green's functions, we use the methods developed for permutation groups schemes of Young–Yamanuti.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Boy de la Tour, Thierry, e Mnacho Echenim. "On leaf permutative theories and occurrence permutation groups". Electronic Notes in Theoretical Computer Science 86, n. 1 (maggio 2003): 61–75. http://dx.doi.org/10.1016/s1571-0661(04)80653-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Senashov, Vasily S., Konstantin A. Filippov e Anatoly K. Shlepkin. "Regular permutations and their applications in crystallography". E3S Web of Conferences 525 (2024): 04002. http://dx.doi.org/10.1051/e3sconf/202452504002.

Testo completo
Abstract (sommario):
The representation of a group G in the form of regular permutations is widely used for studying the structure of finite groups, in particular, parameters like the group density function. This is related to the increased potential of computer technologies for conducting calculations. The work addresses the problem of calculation regular permutations with restrictions on the structure of the degree and order of permutations. The considered regular permutations have the same nontrivial order, which divides the degree of the permutation. Examples of the application of permutation groups in crystallography and crystal chemistry are provided.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Cameron, Peter J. "Cofinitary Permutation Groups". Bulletin of the London Mathematical Society 28, n. 2 (marzo 1996): 113–40. http://dx.doi.org/10.1112/blms/28.2.113.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Lucchini, A., F. Menegazzo e M. Morigi. "Generating Permutation Groups". Communications in Algebra 32, n. 5 (31 dicembre 2004): 1729–46. http://dx.doi.org/10.1081/agb-120029899.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kearnes, Keith A. "Collapsing permutation groups". Algebra Universalis 45, n. 1 (1 febbraio 2001): 35–51. http://dx.doi.org/10.1007/s000120050200.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Gu, Yutong. "Introduction of Several Special Groups and Their Applications to Rubik’s Cube". Highlights in Science, Engineering and Technology 47 (11 maggio 2023): 172–75. http://dx.doi.org/10.54097/hset.v47i.8186.

Testo completo
Abstract (sommario):
Group theory is the subject that aims to study the symmetries and structures of groups in mathematics. This work provides an introduction to group theory and explores some potential applications of group theory on complex geometric objects like the Rubik's cube. To this end, the concepts of symmetric group, permutation group, and cyclic group are introduced, and the famous Lagrange’s theorem and Cayley’s theorem are mentioned briefly. The former theorem establishes that a subgroup’s order must be a divisor of the parent group’s order. Concerning the permutation group, it is a set of permutations that form a group under composition. Hence, the various groups that can be formed by the Rubik's cube are discussed, including the group of all possible permutations of the cube's stickers, and the subgroups that are generated through permutations of the six basic movements embedded in Rubik’s cube. Overall, this essay provides an accessible introduction to group theory and its applications to the popular Rubik's cube.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Guralnick, Robert M., e David Perkinson. "Permutation polytopes and indecomposable elements in permutation groups". Journal of Combinatorial Theory, Series A 113, n. 7 (ottobre 2006): 1243–56. http://dx.doi.org/10.1016/j.jcta.2005.11.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Liebeck, Martin W., e Aner Shalev. "Simple groups, permutation groups, and probability". Journal of the American Mathematical Society 12, n. 2 (1999): 497–520. http://dx.doi.org/10.1090/s0894-0347-99-00288-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Chalapathi, T., e R. V. "Graphs of Permutation Groups". International Journal of Computer Applications 179, n. 3 (15 dicembre 2017): 14–19. http://dx.doi.org/10.5120/ijca2017915872.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Burness, Timothy C., e Emily V. Hall. "Almost elusive permutation groups". Journal of Algebra 594 (marzo 2022): 519–43. http://dx.doi.org/10.1016/j.jalgebra.2021.11.037.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Lucchini, Andrea, Marta Morigi e Mariapia Moscatiello. "Primitive permutation IBIS groups". Journal of Combinatorial Theory, Series A 184 (novembre 2021): 105516. http://dx.doi.org/10.1016/j.jcta.2021.105516.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Conway, John H., Alexander Hulpke e John McKay. "On Transitive Permutation Groups". LMS Journal of Computation and Mathematics 1 (1998): 1–8. http://dx.doi.org/10.1112/s1461157000000115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Gerner, M. "Predicate-Induced Permutation Groups". Journal of Semantics 29, n. 1 (13 ottobre 2011): 109–44. http://dx.doi.org/10.1093/jos/ffr007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Adeleke, S. A., e Peter M. Neumann. "Infinite Bounded Permutation Groups". Journal of the London Mathematical Society 53, n. 2 (aprile 1996): 230–42. http://dx.doi.org/10.1112/jlms/53.2.230.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

KOVÁCS, L. G., e M. F. NEWMAN. "GENERATING TRANSITIVE PERMUTATION GROUPS". Quarterly Journal of Mathematics 39, n. 3 (1988): 361–72. http://dx.doi.org/10.1093/qmath/39.3.361.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Neumann, Peter M. "Some Primitive Permutation Groups". Proceedings of the London Mathematical Society s3-50, n. 2 (marzo 1985): 265–81. http://dx.doi.org/10.1112/plms/s3-50.2.265.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Atkinson, M. D. "Permutation Involvement and Groups". Quarterly Journal of Mathematics 52, n. 4 (1 dicembre 2001): 415–21. http://dx.doi.org/10.1093/qjmath/52.4.415.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Cossey, John. "Quotients of permutation groups". Bulletin of the Australian Mathematical Society 57, n. 3 (giugno 1998): 493–95. http://dx.doi.org/10.1017/s0004972700031907.

Testo completo
Abstract (sommario):
If G is a finite permutation group of degree d and N is a normal subgroup of G, Derek Holt has given conditions which show that in some important special cases the least degree of a faithful permutation representation of the quotient G/N will be no larger than d. His conditions do not apply in all cases of interest and he remarks that it would be interesting to know if G/F(G) has a faithful representation of degree no larger than d (where F(G) is the Fitting subgroup of G). We prove in this note that this is the case.
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Cigler, Grega. "Permutation-like matrix groups". Linear Algebra and its Applications 422, n. 2-3 (aprile 2007): 486–505. http://dx.doi.org/10.1016/j.laa.2006.11.007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Mazurov, V. D. "2-Transitive permutation groups". Siberian Mathematical Journal 31, n. 4 (1991): 615–17. http://dx.doi.org/10.1007/bf00970632.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Galvin, Fred. "Almost disjoint permutation groups". Proceedings of the American Mathematical Society 124, n. 6 (1996): 1723–25. http://dx.doi.org/10.1090/s0002-9939-96-03264-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Hulpke, Alexander. "Constructing transitive permutation groups". Journal of Symbolic Computation 39, n. 1 (gennaio 2005): 1–30. http://dx.doi.org/10.1016/j.jsc.2004.08.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Cameron, Peter J. "Cycle-closed permutation groups". Journal of Algebraic Combinatorics 5, n. 4 (ottobre 1996): 315–22. http://dx.doi.org/10.1007/bf00193181.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Grech, Mariusz. "Graphical cyclic permutation groups". Discrete Mathematics 337 (dicembre 2014): 25–33. http://dx.doi.org/10.1016/j.disc.2014.08.006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Bichon, Julien. "ALGEBRAIC QUANTUM PERMUTATION GROUPS". Asian-European Journal of Mathematics 01, n. 01 (marzo 2008): 1–13. http://dx.doi.org/10.1142/s1793557108000023.

Testo completo
Abstract (sommario):
We discuss some algebraic aspects of quantum permutation groups, working over arbitrary fields. If 𝕂 is any characteristic zero field, we show that there exists a universal cosemisimple Hopf algebra coacting on the diagonal algebra 𝕂n: this is a refinement of Wang's universality theorem for the (compact) quantum permutation group. We also prove a structural result for Hopf algebras having a non-ergodic coaction on the diagonal algebra 𝕂n, on which we determine the possible group gradings when 𝕂 is algebraically closed and has characteristic zero.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Neumann, Peter M., e Cheryl E. Praeger. "Three-star permutation groups". Illinois Journal of Mathematics 47, n. 1-2 (marzo 2003): 445–52. http://dx.doi.org/10.1215/ijm/1258488164.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Kuzucuoğlu, M. "Barely transitive permutation groups". Archiv der Mathematik 55, n. 6 (dicembre 1990): 521–32. http://dx.doi.org/10.1007/bf01191686.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Li, Jiongsheng. "TheL-sharp permutation groups". Science in China Series A: Mathematics 43, n. 1 (gennaio 2000): 22–27. http://dx.doi.org/10.1007/bf02903844.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Anagnostopoulou-Merkouri, Marina, Peter J. Cameron e Enoch Suleiman. "Pre-primitive permutation groups". Journal of Algebra 636 (dicembre 2023): 695–715. http://dx.doi.org/10.1016/j.jalgebra.2023.09.012.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Franchi, Clara. "Abelian sharp permutation groups". Journal of Algebra 283, n. 1 (gennaio 2005): 1–5. http://dx.doi.org/10.1016/j.jalgebra.2004.06.031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Khashaev, Arthur A. "On the membership problem for finite automata over symmetric groups". Discrete Mathematics and Applications 32, n. 6 (1 dicembre 2022): 383–89. http://dx.doi.org/10.1515/dma-2022-0033.

Testo completo
Abstract (sommario):
Abstract We consider automata in which transitions are labelled with arbitrary permutations. The language of such an automaton consists of compositions of permutations for all possible admissible computation paths. The membership problem for finite automata over symmetric groups is the following decision problem: does a given permutation belong to the language of a given automaton? We show that this problem is NP-complete. We also propose an efficient algorithm for the case of strongly connected automata.
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Vesanen, Ari. "Finite classical groups and multiplication groups of loops". Mathematical Proceedings of the Cambridge Philosophical Society 117, n. 3 (maggio 1995): 425–29. http://dx.doi.org/10.1017/s0305004100073278.

Testo completo
Abstract (sommario):
Let Q be a loop; then the left and right translations La(x) = ax and Ra(x) = xa are permutations of Q. The permutation group M(Q) = 〈La, Ra | a ε Q〉 is called the multiplication group of Q; it is well known that the structure of M(Q) reflects strongly the structure of Q (cf. [1] and [8], for example). It is thus an interesting question, which groups can be represented as multiplication groups of loops. In particular, it seems important to classify the finite simple groups that are multiplication groups of loops. In [3] it was proved that the alternating groups An are multiplication groups of loops, whenever n ≥ 6; in this paper we consider the finite classical groups and prove the following theorems
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Pearson, Mike, e Ian Short. "Magic letter groups". Mathematical Gazette 91, n. 522 (novembre 2007): 493–99. http://dx.doi.org/10.1017/s0025557200182130.

Testo completo
Abstract (sommario):
Certain numeric puzzles, known as ‘magic letters’, each have a finite permutation group associated with them in a natural manner. We describe how the isomorphism type of these permutation groups relates to the structure of the magic letters.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Grech, Mariusz, e Andrzej Kisielewicz. "Cyclic Permutation Groups that are Automorphism Groups of Graphs". Graphs and Combinatorics 35, n. 6 (13 settembre 2019): 1405–32. http://dx.doi.org/10.1007/s00373-019-02096-1.

Testo completo
Abstract (sommario):
Abstract In this paper we establish conditions for a permutation group generated by a single permutation to be an automorphism group of a graph. This solves the so called concrete version of König’s problem for the case of cyclic groups. We establish also similar conditions for the symmetry groups of other related structures: digraphs, supergraphs, and boolean functions.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Burov, Dmitry A. "Subgroups of direct products of groups invariant under the action of permutations on factors". Discrete Mathematics and Applications 30, n. 4 (26 agosto 2020): 243–55. http://dx.doi.org/10.1515/dma-2020-0021.

Testo completo
Abstract (sommario):
AbstractWe study subgroups of the direct product of two groups invariant under the action of permutations on factors. An invariance criterion for the subdirect product of two groups under the action of permutations on factors is put forward. Under certain additional constraints on permutations, we describe the subgroups of the direct product of a finite number of groups that are invariant under the action of permutations on factors. We describe the subgroups of the additive group of vector space over a finite field of characteristic 2 which are invariant under the coordinatewise action of inversion permutation of nonzero elements of the field.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Gill, Nick, e Pablo Spiga. "Binary permutation groups: Alternating and classical groups". American Journal of Mathematics 142, n. 1 (2020): 1–43. http://dx.doi.org/10.1353/ajm.2020.0000.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Banica, Teodor, Julien Bichon e Sonia Natale. "Finite quantum groups and quantum permutation groups". Advances in Mathematics 229, n. 6 (aprile 2012): 3320–38. http://dx.doi.org/10.1016/j.aim.2012.02.012.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

BRYANT, R. M., L. G. KOVÁCS e G. R. ROBINSON. "TRANSITIVE PERMUTATION GROUPS AND IRREDUCIBLE LINEAR GROUPS". Quarterly Journal of Mathematics 46, n. 4 (1995): 385–407. http://dx.doi.org/10.1093/qmath/46.4.385.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Heath-Brown, D. R., Cheryl E. Praeger e Aner Shalev. "Permutation groups, simple groups, and sieve methods". Israel Journal of Mathematics 148, n. 1 (dicembre 2005): 347–75. http://dx.doi.org/10.1007/bf02775443.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Bowler, Nathan, e Thomas Forster. "Normal subgroups of infinite symmetric groups, with an application to stratified set theory". Journal of Symbolic Logic 74, n. 1 (marzo 2009): 17–26. http://dx.doi.org/10.2178/jsl/1231082300.

Testo completo
Abstract (sommario):
It is generally known that infinite symmetric groups have few nontrivial normal subgroups (typically only the subgroups of bounded support) and none of small index. (We will explain later exactly what we mean by small). However the standard analysis relies heavily on the axiom of choice. By dint of a lot of combinatorics we have been able to dispense—largely—with the axiom of choice. Largely, but not entirely: our result is that if X is an infinite set with ∣X∣ = ∣X × X∣ then Symm(X) has no nontrivial normal subgroups of small index. Some condition like this is needed because of the work of Sam Tarzi who showed [4] that, for any finite group G, there is a model of ZF without AC in which there is a set X with Symm(X)/FSymm(X) isomorphic to G.The proof proceeds in two stages. We consider a particularly useful class of permutations, which we call the class of flexible permutations. A permutation of X is flexible if it fixes at least ∣X∣-many points. First we show that every normal subgroup of Symm(X) (of small index) must contain every flexible permutation. This will be theorem 4. Then we show (theorem 7) that the flexible permutations generate Symm(X).
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Praeger, Cheryl E. "Seminormal and subnormal subgroup lattices for transitive permutation groups". Journal of the Australian Mathematical Society 80, n. 1 (febbraio 2006): 45–64. http://dx.doi.org/10.1017/s144678870001137x.

Testo completo
Abstract (sommario):
AbstractVarious lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

., Haci Aktas. "On Finite Topological Permutation Groups". Journal of Applied Sciences 2, n. 1 (15 dicembre 2001): 60–61. http://dx.doi.org/10.3923/jas.2002.60.61.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Jones, Gareth. "Combinatorial categories and permutation groups". Ars Mathematica Contemporanea 10, n. 2 (20 ottobre 2015): 237–54. http://dx.doi.org/10.26493/1855-3974.545.fd5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Neumann, Peter M. "Homogeneity of Infinite Permutation Groups". Bulletin of the London Mathematical Society 20, n. 4 (luglio 1988): 305–12. http://dx.doi.org/10.1112/blms/20.4.305.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Birszki, Bálint. "ON PRIMITIVE SHARP PERMUTATION GROUPS". Communications in Algebra 30, n. 6 (19 giugno 2002): 3013–23. http://dx.doi.org/10.1081/agb-120004005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia