Segui questo link per vedere altri tipi di pubblicazioni sul tema: Perfect numbers.

Articoli di riviste sul tema "Perfect numbers"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Perfect numbers".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Hassler, Uwe. "Perfect Numbers". Euleriana 3, n. 2 (22 agosto 2023): 176–85. http://dx.doi.org/10.56031/2693-9908.1052.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Ausubel, Ramona. "Perfect Numbers". Ploughshares 50, n. 2 (giugno 2024): 32–46. http://dx.doi.org/10.1353/plo.2024.a932313.

Testo completo
Abstract (sommario):
Abstract: The Summer 2024 Issue. Ploughshares is an award-winning journal of new writing. Since 1971, Ploughshares has discovered and cultivated the freshest voices in contemporary American literature, and now provides readers with thoughtful and entertaining literature in a variety of formats. Find out why the New York Times named Ploughshares “the Triton among minnows.” The Summer 2024 Issue, guest-edited by Rebecca Makkai, features prose by Dur e Aziz Amna, Ramona Ausubel, Peter Mountford, Khaddafina Mbabazi, DK Nnuro, and more.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Holdener, Judy, e Emily Rachfal. "Perfect and Deficient Perfect Numbers". American Mathematical Monthly 126, n. 6 (29 maggio 2019): 541–46. http://dx.doi.org/10.1080/00029890.2019.1584515.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Fu, Ruiqin, Hai Yang e Jing Wu. "The Perfect Numbers of Pell Number". Journal of Physics: Conference Series 1237 (giugno 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Pollack, Paul, e Vladimir Shevelev. "On perfect and near-perfect numbers". Journal of Number Theory 132, n. 12 (dicembre 2012): 3037–46. http://dx.doi.org/10.1016/j.jnt.2012.06.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Heath-Brown, D. R. "Odd perfect numbers". Mathematical Proceedings of the Cambridge Philosophical Society 115, n. 2 (marzo 1994): 191–96. http://dx.doi.org/10.1017/s0305004100072030.

Testo completo
Abstract (sommario):
It is not known whether or not odd perfect numbers can exist. However it is known that there is no such number below 10300 (see Brent[1]). Moreover it has been proved by Hagis[4]and Chein[2] independently that an odd perfect number must have at least 8 prime factors. In fact results of this latter type can in priniciple be obtained solely by calculation, in view of the result of Pomerance[6] who showed that if N is an odd perfect number with at most k prime factors, thenPomerance's work was preceded by a theorem of Dickson[3]showing that there can be only a finite number of such N. Clearly however the above bound is vastly too large to be of any practical use. The principal object of the present paper is to sharpen the estimate (1). Indeed we shall handle odd ‘multiply perfect’ numbers in general, as did Kanold[5], who extended Dickson's work, and Pomerance. Our result is the following.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Klurman, Oleksiy. "Radical of perfect numbers and perfect numbers among polynomial values". International Journal of Number Theory 12, n. 03 (23 marzo 2016): 585–91. http://dx.doi.org/10.1142/s1793042116500378.

Testo completo
Abstract (sommario):
It is conjectured that [Formula: see text] for any perfect number [Formula: see text]. We prove that [Formula: see text] improving the previous bound of Luca and Pomerance as well as Acquaah and Konyagin. As a consequence, we prove that assuming the [Formula: see text]-conjecture, any integer polynomial of degree [Formula: see text] without repeated factors can take only finitely many perfect values. We also show that the latter holds unconditionally for even perfect numbers.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Tang, Min, Xiao-Zhi Ren e Meng Li. "On near-perfect and deficient-perfect numbers". Colloquium Mathematicum 133, n. 2 (2013): 221–26. http://dx.doi.org/10.4064/cm133-2-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

J. J., Segura, e Ortega S. "All KnownPerfect Numbers other than 6 Satisfy N=4+6n". international journal of mathematics and computer research 12, n. 03 (23 marzo 2024): 4103–6. http://dx.doi.org/10.47191/ijmcr/v12i3.04.

Testo completo
Abstract (sommario):
For all 51 known perfect numbers ranging from (p=2 to p= 82589933) and with the only exception of N=6, all perfect numbers belong to the group of natural numbers formed by N=4+6n. If this observation can be proven valid for all existing even perfect numbers, that would automatically exclude 2/3 of all even numbers out of the possibility of being perfect. If this can be proven a necessary condition for all perfect numbers, then it would rule out the possibility of having any odd perfect numbers.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Jiang, Xing-Wang. "On even perfect numbers". Colloquium Mathematicum 154, n. 1 (2018): 131–36. http://dx.doi.org/10.4064/cm7374-11-2017.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Cowles, John, e Ruben Gamboa. "Perfect Numbers in ACL2". Electronic Proceedings in Theoretical Computer Science 192 (18 settembre 2015): 53–59. http://dx.doi.org/10.4204/eptcs.192.5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Bencze, Mihály. "About k-Perfect Numbers". Analele Universitatii "Ovidius" Constanta - Seria Matematica 22, n. 1 (10 dicembre 2014): 45–50. http://dx.doi.org/10.2478/auom-2014-0005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Cohen, Peter, Katherine Cordwell, Alyssa Epstein, Chung-Hang Kwan, Adam Lott e Steven J. Miller. "On near-perfect numbers". Acta Arithmetica 194, n. 4 (2020): 341–66. http://dx.doi.org/10.4064/aa180821-11-10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

CHEN, FENG-JUAN, e YONG-GAO CHEN. "ON ODD PERFECT NUMBERS". Bulletin of the Australian Mathematical Society 86, n. 3 (16 febbraio 2012): 510–14. http://dx.doi.org/10.1017/s0004972712000032.

Testo completo
Abstract (sommario):
AbstractLet q be an odd prime. In this paper, we prove that if N is an odd perfect number with qα∥N then σ(N/qα)/qα≠p,p2,p3,p4,p1p2,p21p2, where p,p1, p2 are primes and p1≠p2. This improves a result of Dris and Luca [‘A note on odd perfect numbers’, arXiv:1103.1437v3 [math.NT]]: σ(N/qα)/qα≠1,2,3,4,5. Furthermore, we prove that for K≥1 , if N is an odd perfect number with qα ∥N and σ(N/qα)/qα ≤K, then N≤4K8.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

TANG, MIN, e MIN FENG. "ON DEFICIENT-PERFECT NUMBERS". Bulletin of the Australian Mathematical Society 90, n. 2 (23 maggio 2014): 186–94. http://dx.doi.org/10.1017/s0004972714000082.

Testo completo
Abstract (sommario):
AbstractFor a positive integer $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$, let $\sigma (n)$ denote the sum of the positive divisors of $n$. Let $d$ be a proper divisor of $n$. We call $n$ a deficient-perfect number if $\sigma (n) = 2n - d$. In this paper, we show that there are no odd deficient-perfect numbers with three distinct prime divisors.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Finch, Carrie, e Lenny Jones. "Perfect power Riesel numbers". Journal of Number Theory 150 (maggio 2015): 41–46. http://dx.doi.org/10.1016/j.jnt.2014.11.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Dittmer, Samuel J. "Spoof odd perfect numbers". Mathematics of Computation 83, n. 289 (25 ottobre 2013): 2575–82. http://dx.doi.org/10.1090/s0025-5718-2013-02793-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

KNOPFMACHER, ARNOLD, e FLORIAN LUCA. "ON PRIME-PERFECT NUMBERS". International Journal of Number Theory 07, n. 07 (novembre 2011): 1705–16. http://dx.doi.org/10.1142/s1793042111004447.

Testo completo
Abstract (sommario):
We prove that the Diophantine equation [Formula: see text] has only finitely many positive integer solutions k, p1, …, pk, r1, …, rk, where p1, …, pk are distinct primes. If a positive integer n has prime factorization [Formula: see text], then [Formula: see text] represents the number of ordered factorizations of n into prime parts. Hence, solutions to the above Diophantine equation are designated as prime-perfect numbers.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

CHEN, SHI-CHAO, e HAO LUO. "ODD MULTIPERFECT NUMBERS". Bulletin of the Australian Mathematical Society 88, n. 1 (6 novembre 2012): 56–63. http://dx.doi.org/10.1017/s0004972712000858.

Testo completo
Abstract (sommario):
AbstractA natural number $n$ is called multiperfect or $k$-perfect for integer $k\ge 2$ if $\sigma (n)=kn$, where $\sigma (n)$ is the sum of the positive divisors of $n$. In this paper, we establish a theorem on odd multiperfect numbers analogous to Euler’s theorem on odd perfect numbers. We describe the divisibility of the Euler part of odd multiperfect numbers and characterise the forms of odd perfect numbers $n=\pi ^\alpha M^2$ such that $\pi \equiv \alpha ~({\rm mod}~8)$, where $\pi ^\alpha $ is the Euler factor of $n$. We also present some examples to show the nonexistence of odd perfect numbers of certain forms.
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Bezuszka, Stanley J., e Margaret J. Kenney. "Even Perfect Numbers: (Update)2". Mathematics Teacher 90, n. 8 (novembre 1997): 628–33. http://dx.doi.org/10.5951/mt.90.8.0628.

Testo completo
Abstract (sommario):
Perfect Numbers may appear perfectly useless; however, they do have redeeming features. Specifically, the pursuit of perfect numbers leads us to examine the history of mathematics very closely to locate information about the progression of mathematicians who have discovered and worked with them. Students assigned to produce a report on perfect numbers and their properties will uncover some fascinating episodes. Further, perfect numbers are part of the frontier of the technological age. They are woven into the mystique of the supercomputer. Anyone with an interest in computing can try to determine how the computer helps in the search for perfect numbers and what algorithms are used for this purpose.
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Nelsen, Roger B. "Proof Without Words: Perfect Numbers and Triangular Numbers". College Mathematics Journal 47, n. 3 (maggio 2016): 171. http://dx.doi.org/10.4169/college.math.j.47.3.171.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Ibro, Vait, e Eugen Ljajko. "Prime, perfect and friendly numbers". Zbornik radova Uciteljskog fakulteta Prizren-Leposavic, n. 12 (2018): 29–39. http://dx.doi.org/10.5937/zrufpl1812029i.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Das, Bhabesh, e Helen K. Saikia. "On Near 3−Perfect Numbers". Sohag Journal of Mathematics 4, n. 1 (1 gennaio 2017): 1–5. http://dx.doi.org/10.18576/sjm/040101.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Beldon, Tom, e Tony Gardiner. "Triangular Numbers and Perfect Squares". Mathematical Gazette 86, n. 507 (novembre 2002): 423. http://dx.doi.org/10.2307/3621134.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Sándor, József. "On certain rational perfect numbers". Notes on Number Theory and Discrete Mathematics 28, n. 2 (12 maggio 2022): 281–85. http://dx.doi.org/10.7546/nntdm.2022.28.2.281-285.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Flowers, Joe. "Some Characterizations of Perfect Numbers". Missouri Journal of Mathematical Sciences 7, n. 3 (ottobre 1995): 104–15. http://dx.doi.org/10.35834/1995/0703104.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Popov, Michael A. "On Plato's periodic perfect numbers". Bulletin des Sciences Mathématiques 123, n. 1 (gennaio 1999): 29–31. http://dx.doi.org/10.1016/s0007-4497(99)80011-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Kurokawa, Nobushige, e Wakayama Masato. "Zeta functions ofq-perfect numbers". Rendiconti del Circolo Matematico di Palermo 53, n. 3 (ottobre 2004): 381–89. http://dx.doi.org/10.1007/bf02875730.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

De Medts, Tom, e Attila Maróti. "Perfect numbers and finite groups". Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 17–33. http://dx.doi.org/10.4171/rsmup/129-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Luca, Florian. "Perfect fibonacci and lucas numbers". Rendiconti del Circolo Matematico di Palermo 49, n. 2 (maggio 2000): 313–18. http://dx.doi.org/10.1007/bf02904236.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Dunham, William. "Odd Perfect Numbers: A Triptych". Mathematical Intelligencer 42, n. 1 (22 agosto 2019): 42–46. http://dx.doi.org/10.1007/s00283-019-09915-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Bhutani, Kiran R., e Alexander B. Levin. "Graceful numbers". International Journal of Mathematics and Mathematical Sciences 29, n. 8 (2002): 495–99. http://dx.doi.org/10.1155/s0161171202007615.

Testo completo
Abstract (sommario):
We construct a labeled graphD(n)that reflects the structure of divisors of a given natural numbern. We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Gandhi, K. Raja Rama. "Note on Perfect Numbers and their Existence". Bulletin of Mathematical Sciences and Applications 3 (febbraio 2013): 15–19. http://dx.doi.org/10.18052/www.scipress.com/bmsa.3.15.

Testo completo
Abstract (sommario):
This paper will address the interesting results on perfect numbers. As we know that,perfect number ends with 6 or 8 and perfect numbers had some special relation with primes. Hereone can understand that the reasons of relation with primes and existence of odd perfect numbers. If exists, the structures of odd perfect numbers in modulo.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

YUAN, PINGZHI. "AN UPPER BOUND FOR THE NUMBER OF ODD MULTIPERFECT NUMBERS". Bulletin of the Australian Mathematical Society 89, n. 1 (28 gennaio 2013): 1–4. http://dx.doi.org/10.1017/s000497271200113x.

Testo completo
Abstract (sommario):
AbstractA natural number $n$ is called $k$-perfect if $\sigma (n)= kn$. In this paper, we show that for any integers $r\geq 2$ and $k\geq 2$, the number of odd $k$-perfect numbers $n$ with $\omega (n)\leq r$ is bounded by $\left({\lfloor {4}^{r} { \mathop{ \log } \nolimits }_{3} 2\rfloor + r\atop r} \right){ \mathop{ \sum } \nolimits }_{i= 1}^{r} \left({\lfloor kr/ 2\rfloor \atop i} \right)$, which is less than ${4}^{{r}^{2} } $ when $r$ is large enough.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

REN, XIAO-ZHI, e YONG-GAO CHEN. "ON NEAR-PERFECT NUMBERS WITH TWO DISTINCT PRIME FACTORS". Bulletin of the Australian Mathematical Society 88, n. 3 (11 marzo 2013): 520–24. http://dx.doi.org/10.1017/s0004972713000178.

Testo completo
Abstract (sommario):
AbstractRecently, Pollack and Shevelev [‘On perfect and near-perfect numbers’, J. Number Theory 132 (2012), 3037–3046] introduced the concept of near-perfect numbers. A positive integer $n$ is called near-perfect if it is the sum of all but one of its proper divisors. In this paper, we determine all near-perfect numbers with two distinct prime factors.
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Cai, Tianxin, Deyi Chen e Yong Zhang. "Perfect numbers and Fibonacci primes (I)". International Journal of Number Theory 11, n. 01 (24 novembre 2014): 159–69. http://dx.doi.org/10.1142/s1793042115500098.

Testo completo
Abstract (sommario):
In this paper, we introduce the concept of F-perfect number, which is a positive integer n such that ∑d|n,d<n d2 = 3n. We prove that all the F-perfect numbers are of the form n = F2k-1 F2k+1, where both F2k-1 and F2k+1 are Fibonacci primes. Moreover, we obtain other interesting results and raise a new conjecture on perfect numbers.
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Bravo, Jhon J., e Florian Luca. "Perfect Pell and Pell–Lucas numbers". Studia Scientiarum Mathematicarum Hungarica 56, n. 4 (dicembre 2019): 381–87. http://dx.doi.org/10.1556/012.2019.56.4.1440.

Testo completo
Abstract (sommario):
Abstract The Pell sequence is given by the recurrence Pn = 2Pn−1 + Pn−2 with initial condition P0 = 0, P1 = 1 and its associated Pell-Lucas sequence is given by the same recurrence relation but with initial condition Q0 = 2, Q1 = 2. Here we show that 6 is the only perfect number appearing in these sequences. This paper continues a previous work that searched for perfect numbers in the Fibonacci and Lucas sequences.
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Sándor, József. "On certain rational perfect numbers, II". Notes on Number Theory and Discrete Mathematics 28, n. 3 (10 agosto 2022): 525–32. http://dx.doi.org/10.7546/nntdm.2022.28.3.525-532.

Testo completo
Abstract (sommario):
We continue the study from [1], by studying equations of type $\psi(n) = \dfrac{k+1}{k} \cdot \ n+a,$ $a\in \{0, 1, 2, 3\},$ and $\varphi(n) = \dfrac{k-1}{k} \cdot \ n-a,$ $a\in \{0, 1, 2, 3\}$ for $k > 1,$ where $\psi(n)$ and $\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Kustin, Andrew R. "Perfect modules with Betti numbers (2,6,5,1)". Journal of Algebra 600 (giugno 2022): 71–124. http://dx.doi.org/10.1016/j.jalgebra.2022.02.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

CHEN, SHI-CHAO, e HAO LUO. "BOUNDS FOR ODD k-PERFECT NUMBERS". Bulletin of the Australian Mathematical Society 84, n. 3 (21 luglio 2011): 475–80. http://dx.doi.org/10.1017/s0004972711002462.

Testo completo
Abstract (sommario):
AbstractLet k≥2 be an integer. A natural number n is called k-perfect if σ(n)=kn. For any integer r≥1, we prove that the number of odd k-perfect numbers with at most r distinct prime factors is bounded by (k−1)4r3.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Becher, Verónica, e Olivier Carton. "Normal numbers and nested perfect necklaces". Journal of Complexity 54 (ottobre 2019): 101403. http://dx.doi.org/10.1016/j.jco.2019.03.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Fletcher, S. Adam, Pace P. Nielsen e Pascal Ochem. "Sieve methods for odd perfect numbers". Mathematics of Computation 81, n. 279 (1 settembre 2012): 1753–76. http://dx.doi.org/10.1090/s0025-5718-2011-02576-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Gallardo, Luis H., e Olivier Rahavandrainy. "New Congruences for Odd Perfect Numbers". Rocky Mountain Journal of Mathematics 36, n. 1 (febbraio 2006): 225–35. http://dx.doi.org/10.1216/rmjm/1181069496.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Lorenzini, Anna. "Betti numbers of perfect homogeneous ideals". Journal of Pure and Applied Algebra 60, n. 3 (ottobre 1989): 273–88. http://dx.doi.org/10.1016/0022-4049(89)90088-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Ndegwa, Duncan, Loyford Njagi e Josephine Mutembei. "Application of Partitions of Odd Numbers and their Odd Sums to Prove the Nonexistence of Odd Perfect Numbers". Asian Research Journal of Mathematics 20, n. 5 (25 maggio 2024): 28–37. http://dx.doi.org/10.9734/arjom/2024/v20i5800.

Testo completo
Abstract (sommario):
Perfect numbers, which are integers equal to the sum of their proper divisors, excluding themselves, have intrigued mathematicians for centuries. While it is established that even perfect numbers can be expressed as 2p-1(2p-1), where p and 2p-1 are prime numbers (Mersenne primes), the existence of odd perfect numbers remains an unsolved problem. This study aims to prove the nonexistence of odd perfect numbers by utilizing an algorithm which demonstrates that a positive even integer can be partitioned into all pairs of odd numbers. Using this approach, it is proven that any positive odd number 2n+1 can be partitioned into all pairs of both odd and even numbers and from the set of these partitions, we show that there exist a proper subset containing all proper divisors of 2n+1. Using these results, and the facts that there exist infinitely many odd numbers and the odd sums of odd numbers is always odd, we prove the nonexistence of odd perfect numbers contributing to the conjecture that they do not exist.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Sumicad, Rulthan P. "On the Picture-Perfect Number". Journal of Mathematics and Statistics Studies 4, n. 4 (4 dicembre 2023): 106–11. http://dx.doi.org/10.32996/jmss.2023.4.4.11.

Testo completo
Abstract (sommario):
This is a seminar paper on the article picture perfect numbers by Joseph L. Pe that was published in the journal mathematical spectrum in 2008. This paper begins with a discussion of the definition of the more familiar concept of perfect numbers, then proceeds to a discussion of the picture-perfect numbers as defined by Joseph L. Pe, and winds up with a discussion on how to obtain a picture-perfect number using the Andersen's Theorem. This paper also includes proof of the Andersen's Theorem, as well as that of the Andersen's Lemma, which are both attributed to Jens Kruce Andersen.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Asadulla, Syed. "Thirty-nine perfect numbers and their divisors". International Journal of Mathematics and Mathematical Sciences 9, n. 1 (1986): 205–6. http://dx.doi.org/10.1155/s016117128600025x.

Testo completo
Abstract (sommario):
The following results concerning even perfect numbers and their divisors are proved: (1) A positive integernof the form2p−1(2p−1), where2p−1is prime, is a perfect number; (2) every even perfect number is a triangular number; (3)τ(n)=2p, whereτ(n)is the number of positive divisors ofn; (4) the product of the positive divisors ofnisnp; and (5) the sum of the reciprocals of the positive divisors ofnis2. Values ofpfor which 30 even perfect numbers have been found so far are also given.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Goto, Takeshi. "Upper Bounds for Unitary Perfect Numbers and Unitary Harmonic Numbers". Rocky Mountain Journal of Mathematics 37, n. 5 (ottobre 2007): 1557–76. http://dx.doi.org/10.1216/rmjm/1194275935.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Jakimczuk, Rafael. "Divisors of numbers with k prime factors and perfect numbers". International Mathematical Forum 10 (2015): 339–47. http://dx.doi.org/10.12988/imf.2015.5435.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Barbeau, E. J. "Numbers Differing from Consecutive Squares by Squares". Canadian Mathematical Bulletin 28, n. 3 (1 settembre 1985): 337–42. http://dx.doi.org/10.4153/cmb-1985-040-9.

Testo completo
Abstract (sommario):
AbstractIt is shown that there are infinitely many natural numbers which differ from the next four greater perfect squares by a perfect square. This follows from the determination of certain families of solutions to the diophantine equation 2(b2 + 1) = a2 + c2. However, it is essentially known that any natural number with this property cannot be 1 less than a perfect square. The question whether there exists a number differing from the next five greater squares by squares is open.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia