Letteratura scientifica selezionata sul tema "Particle packing"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Particle packing".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Particle packing"
Wiącek, Joanna, Mateusz Stasiak e Jalal Kafashan. "Structural and Micromechanical Properties of Ternary Granular Packings: Effect of Particle Size Ratio and Number Fraction of Particle Size Classes". Materials 13, n. 2 (11 gennaio 2020): 339. http://dx.doi.org/10.3390/ma13020339.
Testo completoMiao, Yinghao, Xin Liu, Yue Hou, Juan Li, Jiaqi Wu e Linbing Wang. "Packing Characteristics of Aggregate with Consideration of Particle size and Morphology". Applied Sciences 9, n. 5 (28 febbraio 2019): 869. http://dx.doi.org/10.3390/app9050869.
Testo completoZhao, Tingting, Y. T. Feng e Yuanqiang Tan. "Characterising 3D spherical packings by principal component analysis". Engineering Computations 37, n. 3 (21 novembre 2019): 1023–41. http://dx.doi.org/10.1108/ec-05-2019-0225.
Testo completoAmano, Yuto, Takashi Itoh, Hoshiaki Terao e Naoyuki Kanetake. "Prediction of Packing Density of Milled Powder Based on Packing Simulation and Particle Shape Analysis". Materials Science Forum 534-536 (gennaio 2007): 1621–24. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.1621.
Testo completoDodds, JohnA. "Particle packing characteristics". Powder Technology 61, n. 1 (aprile 1990): 101. http://dx.doi.org/10.1016/0032-5910(90)80071-6.
Testo completoDinger, Dennis R., e James E. Funk. "Particle-Packing Phenomena and Their Application in Materials Processing". MRS Bulletin 22, n. 12 (dicembre 1997): 19–23. http://dx.doi.org/10.1557/s0883769400034692.
Testo completoChen, Yuan, Didier Imbault e Pierre Dorémus. "Numerical Simulation of Cold Compaction of 3D Granular Packings". Materials Science Forum 534-536 (gennaio 2007): 301–4. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.301.
Testo completoGuo, Ye, Xin Huang e Bao Lin Zhu. "A Calculation Method for Packing Density of Powder in Paste with Continuous Grain Size Distribution". Key Engineering Materials 477 (aprile 2011): 125–31. http://dx.doi.org/10.4028/www.scientific.net/kem.477.125.
Testo completoRoy, D. M., B. E. Scheetz e M. R. Silsbee. "Processing of Optimized Cements and Concretes Via Particle Packing". MRS Bulletin 18, n. 3 (marzo 1993): 45–49. http://dx.doi.org/10.1557/s088376940004389x.
Testo completoLee, Jong-Heon, W. Jack Lackey e James F. Benzel. "Ternary packing of SiC and diamond particles in ethanol". Journal of Materials Research 11, n. 11 (novembre 1996): 2804–10. http://dx.doi.org/10.1557/jmr.1996.0355.
Testo completoTesi sul tema "Particle packing"
Chan, Ka-wai, e 陳嘉威. "Particle packing modeling incorporating the wedging effect". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50900055.
Testo completopublished_or_final_version
Civil Engineering
Master
Master of Philosophy
Zheng, Xiao-Qin Materials Science & Engineering Faculty of Science UNSW. "Packing of particles during softening and melting process". Awarded by:University of New South Wales. School of Materials Science & Engineering, 2007. http://handle.unsw.edu.au/1959.4/31517.
Testo completoChen, Xiaolin. "Particle packing, compaction and sintering in powder metallurgy". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0014/NQ34746.pdf.
Testo completoCaulkin, Richard. "Applications of the DigiPac Model for Particle Packing". Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491658.
Testo completoChe, Lida. "Numerical constitutive laws for powder compaction using particle properties and packing arrangement". Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/40677.
Testo completoChellappah, Kuhan. "A study of the filtration of fibre/particle mixtures". Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6323.
Testo completoChao, Chien-Wei. "An Improved Dynamic Particle Packing Model for Prediction of the Microstructure in Porous Electrodes". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5632.
Testo completoLohmander, Sven. "The influence of particle shape of coating pigments on their packing ability and on the flow properties of coating colours". Doctoral thesis, KTH, Pulp and Paper Technology, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3044.
Testo completoThe influence of particle shape of coating pigments on theirpacking ability and on the flow properties of coating colourshas been investigated. The particle shapes considered werespherical, flaky and acicular (needle-shaped). In the case ofsuspensions containing monodisperse spherical polystyreneparticles, a concentration gradient appeared in the filter cakeforming during filtration under static conditions. Such agradient, monitoredby non-destructive magnetic resonanceimaging (MRI), is not accounted for in the traditionalfiltration theory used in coating technology. Good agreementwas found between a literature model describing filtrationthrough a compressible filter cake and the concentrationgradients measured by MRI. According to this model, the scaledconcentration gradient was the same at all times.
For flaky (mainly kaolin) and acicular (aragonite)particles, a rapid method was evaluated to estimate a shapefactor of the pigment particle. Generalised mathematical modelsof oblate and prolate spheroids were applied to reduce thethree geometrical dimensions of the particle to two, the majoraxis and the minor axis. The shape factor, which is mass-based,was derived from a comparison between the results obtained bytwo different size-assessment instruments, viz. the Sedigraphand an instrument using light scattering. This yields a shapefactor distribution as a function of equivalent sphericalparticle size, but the results are uncertain for small particlediameters, below 0.2 µm. Good agreement was obtainedbetween the shape factor and a mass-based aspect ratio obtainedby image analysis, but the rapid method is generally moreaccurate for flaky than for acicular particles.
Results obtained by capillary viscometry showed that therewas a relationship between the viscosity at high shear rates(>105s-1) and the shape factor, but that it was notsufficient to use the median value of the shape factor toachieve proper information. A more complete evaluation requiresknowledge of the shape factor distribution, which is also givenin part by the method mentioned above. However, a large medianshape factor was related to a high high-shear viscosity.Non-Newtonian entrance pressure losses were sometimessignificant in capillary viscometry, indicating that it wasinappropriate to measure the shear viscosity with only onecapillary. Such effects were however relatively much morepronounced in slit die viscometry, especially in the case ofacicular particles, where the aspect ratio was a crucialparameter. The influence of the shape factor of kaolinparticles on the non-Newtonian entrance pressure losses over aslit die was surprisingly small. The high-shear viscosity ofcoating suspensions based on different pigments correlated withthe median pore size of the corresponding coating layer ratherthan with the porosity.
Keywords: Aspect ratio, capillary viscometry, coatingcolour, filtration, particle packing, pigment, pore structure,rheology, shape factor, slit die viscometry, spheroid.
Ng, Priscilla, Priscilla Ng e Priscilla Ng. "Simulating Particle Packing During Powder Spreading For Selective Laser Melted Additive Manufacturing Using The Discrete Element Method In Abaqus". DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2162.
Testo completoConceição, Edilene de Souza. "Influência da distribuição granulométrica no empacotamento de matérias-primas na formulação de porcelânicos". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-04112011-150732/.
Testo completoComplex materials such as porcelain and porcelain stoneware have maximized their properties when they reach high final densities after sintering. However, formulations contain at least four different raw materials, where the kaolin is the major constituent, but also quartz and feldspars. The final particle size of the mixture is controlled by a single step milling of all materials. The attempt of this paper is to make different combinations of particles size distributions of orthoclase, albite and quartz with a single particle size of kaolin by calculation of maximum packing in order to achieve maximum density crude keeping same final chemical composition. The results showed that using the concept of particle packing and optimizing the particle size distribution was possible to obtain specimens with higher density end, the lower total shrinkage, in addition to reducing the firing temperature, which directly impacts the cost of production.
Libri sul tema "Particle packing"
Particle packing characteristics. Princeton, N.J: Metal Powder Industries Federation, 1989.
Cerca il testo completoCumberland, D. J. The packing of particles. Amsterdam: Elsevier, 1987.
Cerca il testo completoCumberland, D. J. Optimisation of packing of powder particles as an aid to solid phase compaction. Belfast: Dept. ofMech. and Industrial Engineering, The Queen's Univ. of Belfast, 1985.
Cerca il testo completoYu, Aibing. Particle Packing and Transport Phenomena. Springer, 2024.
Cerca il testo completoA, Willhoft Edward M., a cura di. Aseptic processing and packaging of particulate foods. London: Blackie Academic & Professional, 1993.
Cerca il testo completoMattissen, Johanna. Sub-Types of Polysynthesis. A cura di Michael Fortescue, Marianne Mithun e Nicholas Evans. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199683208.013.5.
Testo completoEphraim, Suhir, Lee Y. C e Wong C. P. 1947-, a cura di. Micro- and opto-electronic materials and structures: Physics, mechanics, design, reliability, packaging. New York: Springer, 2007.
Cerca il testo completoCapitoli di libri sul tema "Particle packing"
Johnson, G. D. W., R. H. Ottewill e A. R. Rennie. "Characterisation of Particle Packing". In Modern Aspects of Colloidal Dispersions, 89–99. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-6582-2_8.
Testo completoFunk, James E., e Dennis R. Dinger. "Fundamentals of Particle Packing, Monodisperse Spheres". In Predictive Process Control of Crowded Particulate Suspensions, 59–73. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-3118-0_5.
Testo completoFunk, James E., e Dennis R. Dinger. "Computer Modelling of Particle Packing Phenomena". In Predictive Process Control of Crowded Particulate Suspensions, 95–103. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-3118-0_8.
Testo completoFunk, James E., e Dennis R. Dinger. "Review of Packing in Polydisperse Particle Systems". In Predictive Process Control of Crowded Particulate Suspensions, 37–57. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-3118-0_4.
Testo completoFunk, James E., e Dennis R. Dinger. "Packing of Discrete Versus Continuous Particle Size Distributions". In Predictive Process Control of Crowded Particulate Suspensions, 85–93. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-3118-0_7.
Testo completoHendtlass, Tim. "Quantised Problem Spaces and the Particle Swarm Algorithm". In Natural Intelligence for Scheduling, Planning and Packing Problems, 175–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04039-9_7.
Testo completoAmano, Yuto, Takashi Itoh, Hoshiaki Terao e Naoyuki Kanetake. "Prediction of Packing Density of Milled Powder Based on Packing Simulation and Particle Shape Analysis". In Progress in Powder Metallurgy, 1621–24. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.1621.
Testo completoSmith, P. A., e R. A. Haber. "Use of Particle Packing in Optimization of Slurry Solid Loading". In Materials & Equipment/Whitewares: Ceramic Engineering and Science Proceedings, Volume 10, Issue 1/2, 1–11. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470310526.ch1.
Testo completoIwai, Takashi, Chu-Wan Hong e Peter Greil. "DEM Simulation of Particle Packing Behavior in Colloidal Forming Processes". In Microstructures, Mechanical Properties and Processes - Computer Simulation and Modelling, 53–57. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606157.ch9.
Testo completoPedersen, L. G., e L. M. Ottosen. "Fine Recycled Concrete Aggregates Particle Morphological Parameters and Packing Properties". In Concrete Durability and Service Life Planning, 33–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43332-1_7.
Testo completoAtti di convegni sul tema "Particle packing"
Yang, Jian, Qiuwang Wang e Min Zeng. "Numerical Study of Flow and Heat Transfer in Novel Structure Packed Beds". In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88145.
Testo completoShi, Yu, e Yuwen Zhang. "Simulation of Random Packing of Spherical Particles With Different Size Distributions". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15271.
Testo completoReichart, Markus, Martina Neises-von Puttkamer, Reiner Buck e Robert Pitz-Paal. "Numerical Assessment of Packing Structures for Gas-Particle Trickle Flow Heat Exchanger for Application in CSP Plants". In ASME 2021 15th International Conference on Energy Sustainability collocated with the ASME 2021 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/es2021-62746.
Testo completoGurrum, Siva P., Jie-Hua Zhao e Darvin R. Edwards. "Design Optimization of Material Properties in a Particle-Filled Composite Material System". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66646.
Testo completoAn, Xizhong, Fei Huang, Runyu Yang e Aibing Yu. "DEM Simulation on the Packing of Two-Modal Spheres under One-Dimensional Vibration". In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_215.
Testo completoYuksel, Anil, Michael Cullinan e Jayathi Murthy. "Polarization Effect on Out of Plane Configured Nanoparticle Packing". In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3075.
Testo completoLi, Zhifeng, Liangzhi Cao, Hongchun Wu, Chenghui Wan e Tianliang Hu. "Effects of Applying the Implicit Particle Fuel Model for Pebble-Bed Reactors". In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60382.
Testo completoYoshida, Mikio, Hiroaki Yamamoto, Jun Oshitani e Kuniaki Gotoh. "Effect of Diameter and Coverage Ratio of Admixed Particle on Packing Fraction in Particle-Bed". In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_178.
Testo completoShin, Y. B., e E. Kita. "Application of particle swarm optimization to the item packing problem". In OPTI2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/op120211.
Testo completoDu, Wenchao, Xiaorui Ren, Yexiao Chen, Chao Ma, Miladin Radovic e Zhijian Pei. "Model Guided Mixing of Ceramic Powders With Graded Particle Sizes in Binder Jetting Additive Manufacturing". In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6651.
Testo completo