Articoli di riviste sul tema "Optoelectronic devices"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Optoelectronic devices.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Optoelectronic devices".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin e Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices". Materials 15, n. 24 (7 dicembre 2022): 8731. http://dx.doi.org/10.3390/ma15248731.

Testo completo
Abstract (sommario):
Polysiloxanes and materials based on them (silicone materials) are of great interest in optoelectronics due to their high flexibility, good film-forming ability, and optical transparency. According to the literature, polysiloxanes are suggested to be very promising in the field of optoelectronics and could be employed in the composition of liquid crystal devices, computer memory drives organic light emitting diodes (OLED), and organic photovoltaic devices, including dye synthesized solar cells (DSSC). Polysiloxanes are also a promising material for novel optoectronic devices, such as LEDs based on arrays of III–V nanowires (NWs). In this review, we analyze the currently existing types of silicone materials and their main properties, which are used in optoelectronic device development.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa e Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology". Journal of Composites Science 6, n. 12 (16 dicembre 2022): 393. http://dx.doi.org/10.3390/jcs6120393.

Testo completo
Abstract (sommario):
Optoelectronic devices have been developed using the polymer/fullerene nanocomposite, as focused in this review. The polymer/fullerene nanocomposite shows significant structural, electronics, optical, and useful physical properties in optoelectronics. Non-conducting and conducting polymeric nanocomposites have been applied in optoelectronics, such as light-emitting diodes, solar cells, and sensors. Inclusion of fullerene has further broadened the methodological application of the polymer/fullerene nanocomposite. The polymeric matrices and fullerene may have covalent or physical interactions for charge or electron transportation and superior optical features. Green systems have also been explored in optoelectronic devices; however, due to limited efforts, further design innovations are desirable in green optoelectronics. Nevertheless, the advantages and challenges of the green polymer/fullerene nanocomposite in optoelectronic devices yet need to be explored.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Alles, M. A., S. M. Kovalev e S. V. Sokolov. "Optoelectronic Defuzzification Devices". Физические основы приборостроения 1, n. 3 (15 settembre 2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Bhattacharya, Pallab, e Lily Y. Pang. "Semiconductor Optoelectronic Devices". Physics Today 47, n. 12 (dicembre 1994): 64. http://dx.doi.org/10.1063/1.2808754.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Osten, W. "Advanced Optoelectronic Devices". Optics & Laser Technology 31, n. 8 (novembre 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Jerrard, H. G. "Picosecond optoelectronic devices". Optics & Laser Technology 18, n. 2 (aprile 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Chapman, David. "Optoelectronic semiconductor devices". Microelectronics Journal 25, n. 8 (novembre 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Djuris˘Ić, A. B., e W. K. Chan. "Organic Optoelectronic Devices". HKIE Transactions 11, n. 2 (gennaio 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan e Dandan Sang. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction". Molecules 28, n. 3 (30 gennaio 2023): 1334. http://dx.doi.org/10.3390/molecules28031334.

Testo completo
Abstract (sommario):
Diamond holds promise for optoelectronic devices working in high-frequency, high-power and high-temperature environments, for example in some aspect of nuclear energetics industry processing and aerospace due to its wide bandgap (5.5 eV), ultimate thermal conductivity, high-pressure resistance, high radio frequency and high chemical stability. In the last several years, p-type B-doped diamond (BDD) has been fabricated to heterojunctions with all kinds of non-metal oxide (AlN, GaN, Si and carbon-based semiconductors) to form heterojunctions, which may be widely utilized in various optoelectronic device technology. This article discusses the application of diamond-based heterostructures and mainly writes about optoelectronic device fabrication, optoelectronic performance research, LEDs, photodetectors, and high-electron mobility transistor (HEMT) device applications based on diamond non-metal oxide (AlN, GaN, Si and carbon-based semiconductor) heterojunction. The discussion in this paper will provide a new scheme for the improvement of high-temperature diamond-based optoelectronics.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Vazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin e Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES". Electrical and data processing facilities and systems 18, n. 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.

Testo completo
Abstract (sommario):
Relevance Currently, optoelectronic devices based on diffraction gratings from standing elastic waves are widely used. This is due to the fact that such devices are small in size, allow realtime measurements and have high accuracy, speed and reliability. A review of foreign patents and scientific and technical literature shows that in Japan, the USA, Germany and other countries, intensive work has been carried out in recent years to create optoelectronic devices as part of information-measuring systems based on the use of diffraction gratings from standing elastic waves. Such work is also carried out in Russia. Today, optoelectronic devices are widely used in various fields of industry, medicine, ecology, etc. Aim of research It is necessary to investigate the prospects of research on the development of optoelectronic devices based on diffraction gratings from standing elastic waves. It is necessary to consider the physics of processes in the field of acousto-optic interactions. It is important to give the main characteristics and possible applications of optoelectronic devices based on diffraction gratings from standing elastic waves. Research objects Light and sound waves interacting with each other when they pass through the same medium, diffraction grating, optoelectronic device. Research methods Mathematical methods of calculation and analysis. Results The need for research in the field of optoelectronic devices based on diffraction gratings from standing elastic waves is formulated. It is shown that when passing through the same medium, light and sound waves interact with each other. Light is scattered on a sound wave, as on a diffraction grating. Recommendations for the design of optoelectronic devices based on diffraction gratings from standing elastic waves are proposed. Possible areas of application of optoelectronic devices based on diffraction gratings from standing elastic waves are considered. Keywords: acousto-optics, waves, modulator, diffraction grating, optoelectronic device
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Lugli, Paolo, Fabio Compagnone, Aldo Di Carlo e Andrea Reale. "Simulation of Optoelectronic Devices". VLSI Design 13, n. 1-4 (1 gennaio 2001): 23–36. http://dx.doi.org/10.1155/2001/19585.

Testo completo
Abstract (sommario):
In the spirit of reviewing various approaches to the modeling and simulation of optoelectronic devices, we discuss two specific examples, related respectively to Semiconductor Optical Amplifiers and to Quantum Cascade Lasers. In the former case, a tight-binding analysis is performed aimed at the optimization of the polarization independence of the device. Further, a rate-equation model is set up to describe the dynamics of gain recovery after optical pumping. A Monte Carlo simulation of a superlattice quantum cascade laser is then presented which provides an insight into the microscopic processes controlling the performance of this device.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

MILLER, D. A. B. "QUANTUM WELL OPTOELECTRONIC SWITCHING DEVICES". International Journal of High Speed Electronics and Systems 01, n. 01 (marzo 1990): 19–46. http://dx.doi.org/10.1142/s0129156490000034.

Testo completo
Abstract (sommario):
Quantum well semiconductor structures allow small, fast, efficient optoelectronic devices such as optical modulators and switches. These are capable of logic themselves and have good potential for integration with electronic integrated circuits for parallel high speed interconnections. Devices can be made both in waveguides and two-dimensional parallel arrays. Working arrays of optical logic and memory devices have been demonstrated, to sizes as large as 2 048 elements, all externally accessible in parallel with free-space optics. This article gives an overview of the physics underlying the operation of such devices, and describes the principles of several of the device types, including self-electrooptic effect devices (SEEDs).
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Wu, Jieyun, Qing Li, Wen Wang e Kaixin Chen. "Optoelectronic Properties and Structural Modification of Conjugated Polymers Based on Benzodithiophene Groups". Mini-Reviews in Organic Chemistry 16, n. 3 (25 gennaio 2019): 253–60. http://dx.doi.org/10.2174/1570193x15666180406144851.

Testo completo
Abstract (sommario):
Organic conjugated materials have shown attractive applications due to their good optoelectronic properties, which enable them solution processing techniques in organic optoelectronic devices. Many conjugated materials have been investigated in polymer solar cells and organic field-effect transistors. Among those conjugated materials, Benzo[1,2-b:4,5-b′]dithiophene (BDT) is one of the most employed fused-ring building groups for the synthesis of conjugated materials. The symmetric and planar conjugated structure, tight and regular stacking of BDT can be expected to exhibit the excellent carrier transfer for optoelectronics. In this review, we summarize the recent progress of BDT-based conjugated polymers in optoelectronic devices. BDT-based conjugated materials are classified into onedimensional (1D) and two-dimensional (2D) BDT-based conjugated polymers. Firstly, we introduce the fundamental information of BDT-based conjugated materials and their application in optoelectronic devices. Secondly, the design and synthesis of alkyl, alkoxy and aryl-substituted BDT-based conjugated polymers are discussed, which enables the construction of one-dimensional and two-dimensional BDTbased conjugated system. In the third part, the structure modification, energy level tuning and morphology control and their influences on optoelectronic properties are discussed in detail to reveal the structure- property relationship. Overall, we hope this review can be a good reference for the molecular design of BDT-based semiconductor materials in optoelectronic devices.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Ma, Qijie, Guanghui Ren, Arnan Mitchell e Jian Zhen Ou. "Recent advances on hybrid integration of 2D materials on integrated optics platforms". Nanophotonics 9, n. 8 (17 aprile 2020): 2191–214. http://dx.doi.org/10.1515/nanoph-2019-0565.

Testo completo
Abstract (sommario):
AbstractThe burgeoning research into two-dimensional (2D) materials opens a door to novel photonic and optoelectronic devices utilizing their fascinating electronic and photonic properties in thin-layered architectures. The hybrid integration of 2D materials onto integrated optics platforms thus becomes a potential solution to tackle the bottlenecks of traditional optoelectronic devices. In this paper, we present the recent advances of hybrid integration of a wide range of 2D materials on integrated optics platforms for developing high-performance photodetectors, modulators, lasers, and nonlinear optics. Such hybrid integration enables fully functional on-chip devices to be readily accessible researchers and technology developers, becoming a potential candidate for next-generation photonics and optoelectronics industries.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Li, Ziwei, Boyi Xu, Delang Liang e Anlian Pan. "Polarization-Dependent Optical Properties and Optoelectronic Devices of 2D Materials". Research 2020 (29 agosto 2020): 1–35. http://dx.doi.org/10.34133/2020/5464258.

Testo completo
Abstract (sommario):
The development of optoelectronic devices requires breakthroughs in new material systems and novel device mechanisms, and the demand recently changes from the detection of signal intensity and responsivity to the exploration of sensitivity of polarized state information. Two-dimensional (2D) materials are a rich family exhibiting diverse physical and electronic properties for polarization device applications, including anisotropic materials, valleytronic materials, and other hybrid heterostructures. In this review, we first review the polarized-light-dependent physical mechanism in 2D materials, then present detailed descriptions in optical and optoelectronic properties, involving Raman shift, optical absorption, and light emission and functional optoelectronic devices. Finally, a comment is made on future developments and challenges. The plethora of 2D materials and their heterostructures offers the promise of polarization-dependent scientific discovery and optoelectronic device application.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Liu, Zhixiong, e Husam N. Alshareef. "MXenes for Optoelectronic Devices". Advanced Electronic Materials 7, n. 9 (8 luglio 2021): 2100295. http://dx.doi.org/10.1002/aelm.202100295.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Chuang, Shun Lien, Nasser Peyghambarian e Stephan Koch. "Physics of Optoelectronic Devices". Physics Today 49, n. 7 (luglio 1996): 62. http://dx.doi.org/10.1063/1.2807693.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Demming, Anna, Mark Brongersma e Dai Sik Kim. "Plasmonics in optoelectronic devices". Nanotechnology 23, n. 44 (18 ottobre 2012): 440201. http://dx.doi.org/10.1088/0957-4484/23/44/440201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Cai, Yuanjing, Anjun Qin e Ben Zhong Tang. "Siloles in optoelectronic devices". Journal of Materials Chemistry C 5, n. 30 (2017): 7375–89. http://dx.doi.org/10.1039/c7tc02511d.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Bouscher, Shlomi, Dmitry Panna e Alex Hayat. "Semiconductor–superconductor optoelectronic devices". Journal of Optics 19, n. 10 (20 settembre 2017): 103003. http://dx.doi.org/10.1088/2040-8986/aa8888.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Bhattacharya, Pallab, e Zetian Mi. "Quantum-Dot Optoelectronic Devices". Proceedings of the IEEE 95, n. 9 (settembre 2007): 1723–40. http://dx.doi.org/10.1109/jproc.2007.900897.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Goldstein, L. "Optoelectronic devices by GSMBE". Journal of Crystal Growth 105, n. 1-4 (ottobre 1990): 93–96. http://dx.doi.org/10.1016/0022-0248(90)90344-k.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Liang, Zhiqiang, Jun Sun, Yueyue Jiang, Lin Jiang e Xiaodong Chen. "Plasmonic Enhanced Optoelectronic Devices". Plasmonics 9, n. 4 (14 febbraio 2014): 859–66. http://dx.doi.org/10.1007/s11468-014-9682-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Star, Alexander, Yu Lu, Keith Bradley e George Grüner. "Nanotube Optoelectronic Memory Devices". Nano Letters 4, n. 9 (settembre 2004): 1587–91. http://dx.doi.org/10.1021/nl049337f.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Henini, M. "Physics of optoelectronic devices". Microelectronics Journal 28, n. 1 (gennaio 1997): 101–2. http://dx.doi.org/10.1016/s0026-2692(97)87853-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Henini, Mohamed. "Optoelectronic materials and devices". Microelectronics Journal 25, n. 8 (novembre 1994): 607–8. http://dx.doi.org/10.1016/0026-2692(94)90126-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Ho, P. K. "All-Polymer Optoelectronic Devices". Science 285, n. 5425 (9 luglio 1999): 233–36. http://dx.doi.org/10.1126/science.285.5425.233.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Tomas, R. "Physics of optoelectronic devices". Optics and Lasers in Engineering 26, n. 1 (gennaio 1997): 72. http://dx.doi.org/10.1016/0143-8166(96)81156-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Hövel, S., N. C. Gerhardt, M. R. Hofmann, F. Y. Lo, D. Reuter, A. D. Wieck, E. Schuster, H. Wende e W. Keune. "Spin-controlled optoelectronic devices". physica status solidi (c) 6, n. 2 (febbraio 2009): 436–39. http://dx.doi.org/10.1002/pssc.200880357.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Shan, Xuanyu, Chenyi Zhao, Ya Lin, Jilin Liu, Xiaohan Zhang, Ye Tao, Chunliang Wang et al. "Optoelectronic synaptic device based on ZnO/HfOx heterojunction for high-performance neuromorphic vision system". Applied Physics Letters 121, n. 26 (26 dicembre 2022): 263501. http://dx.doi.org/10.1063/5.0129642.

Testo completo
Abstract (sommario):
Optoelectronic synapses are considered to be important cornerstones in the construction of neuromorphic computing systems because of their low power consumption, high operating speeds, and high scalability. In this work, we demonstrate an optoelectronic synaptic device based on a ZnO/HfOx heterojunction in which optical potentiation/electrical depression behaviors and nonvolatile high current state can be implemented. The heterojunction device exhibits conductance evolution with high linearity. The excellent optoelectronic memristive behavior of the device can be attributed to the interface barrier between ZnO and HfOx, which hinders the recombination of photo-excited electron–hole pairs to increase the carrier lifetime, and realizes the nonvolatile high current state. More importantly, the artificial vision system based on optoelectronic synaptic devices can achieved a high recognition accuracy of 96.1%. Our work provides a feasible pathway toward the development of optoelectronic synaptic devices for use in high-performance neuromorphic vision systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Zhuo, Linqing, Dongquan Li, Weidong Chen, Yu Zhang, Wang Zhang, Ziqi Lin, Huadan Zheng et al. "High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber". Nanophotonics 11, n. 6 (2 febbraio 2022): 1137–47. http://dx.doi.org/10.1515/nanoph-2021-0688.

Testo completo
Abstract (sommario):
Abstract Two-dimensional (2D) materials exhibit fascinating and outstanding optoelectronic properties, laying the foundation for the development of novel optoelectronic devices. However, ultra-weak light absorption of 2D materials limits the performance of the optoelectronic devices. Here, a structure of MoS2/graphene/Au integrated onto the side-polished fiber (SPF) is proposed to achieve a high-performance fiber-integrated multifunction-in-one optoelectronic device. It is found that the device can absorb the transverse magnetic (TM) mode guided in the SPF and generate photocurrents as a polarization-sensitive photodetector, while the transverse electric (TE) mode passes with low loss through the device, making the device simultaneously a polarizer. In the device, the MoS2 film and the Au finger electrode can enhance the TM absorption by 1.75 times and 24.8 times, respectively, thus allowing to achieve high performance: a high photoresponsivity of 2.2 × 105 A/W at 1550 nm; the external quantum efficiency (EQE) of 1.76 × 107%; a high photocurrent polarization ratio of 0.686 and a polarization efficiency of 3.9 dB/mm at C-band. The integration of 2D materials on SPF paves the way to enhance the light–2D material interaction and achieve high performance multifunction-in-one fiber-integrated optoelectronic devices.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Gorham, D. "Amorphous and microcrystalline semiconductor devices: Optoelectronic devices". Microelectronics Journal 24, n. 7 (novembre 1993): 733. http://dx.doi.org/10.1016/0026-2692(93)90016-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Tang, Hongyu, e Giulia Tagliabue. "Tunable photoconductive devices based on graphene/WSe2 heterostructures". EPJ Web of Conferences 266 (2022): 09010. http://dx.doi.org/10.1051/epjconf/202226609010.

Testo completo
Abstract (sommario):
Optoelectronic tunability in van der Waals heterostructures is essential for their optoelectronic applications. In this work, tunable photoconductive properties were investigated in the heterostructures of WSe2 and monolayer graphene with different stacking orders on SiO2/Si substrates. Here, we demonstrated the effect of the material thickness of WSe2 and graphene on the interfacial charge transport, light absorption, and photoresponses. The results showed that the WSe2/graphene heterostructure exhibited positive photoconductivity after photoexcitation, while negative photoconductivity was observed in the graphene/WSe2 heterostructures. The tunable photoconductive behaviors provide promising potential applications of van der Waals heterostructures in optoelectronics. This work has guiding significance for the realization of stacking engineering in van der Waals heterostructures.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Sakurai, Makoto, Ke Wei Liu, Romain Ceolato e Masakazu Aono. "Optical Properties of ZnO Nanowires Decorated with Au Nanoparticles". Key Engineering Materials 547 (aprile 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/kem.547.7.

Testo completo
Abstract (sommario):
One of the key technologies in future optoelectronics is control of excitons in oxide materials by the coupling with plasmons on noble metal surfaces. Optical properties of ZnO nanowires decorated with Au nanoparticles were studied to understand fundamental mechanism of the coupling and to develop optoelectronic devices with new functionalities. Light intensity at the main peak position in the photoluminescence (PL) spectra of ZnO nanowires was enhanced with the coverage of Au nanoparticles. Lifetime of excitons excited optically decreased by the decoration of Au nanoparticles. Understanding of the coupling between excitons and plasmons leads to optical control of excitons and will pave the way for new type of optoelectronic devices.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

ابراهيم السنوسي نصر و احمد ابوسيف عبد الرحمن. "Interactive Learning Material for Optoelectronic Devices using MATLAB-based GUI". Journal of Pure & Applied Sciences 19, n. 2 (18 novembre 2020): 141–47. http://dx.doi.org/10.51984/jopas.v19i2.878.

Testo completo
Abstract (sommario):
Optoelectronic devices have been a difficult subject to grasp for many university students who undertake electronic engineering. Many students find it difficult to understand the operation principle of the optoelectronic devices, for instance, how a solar cell device converts solar energy into electric energy or electricity, or the difference between types of semiconductor devices in terms of interaction between photons and electrons. Thus, the purpose of this paper is to design and implement an interactive and animated software package to aid students in understanding the concepts of the following optoelectronic devices: solar cell, p-n junction photodiode, p-i-n photodiode, light emitting diode and semiconductor laser. The software package was designed to be user friendly and easy to use requiring minimum learning time. The implementation of the software package was achieved using the MATLAB program which is an interactive software package for scientific and engineering numeric computation. The outcome is a series of MATLAB programs that can be used to help students learn the concepts of optoelectronic devices.
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Parkhomenko, Hryhorii P., Erik O. Shalenov, Zarina Umatova, Karlygash N. Dzhumagulova e Askhat N. Jumabekov. "Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells". Energies 15, n. 9 (21 aprile 2022): 3056. http://dx.doi.org/10.3390/en15093056.

Testo completo
Abstract (sommario):
Perovskites are a promising class of semiconductor materials, which are being studied intensively for their applications in emerging new flexible optoelectronic devices. In this paper, device manufacturing and characterization of quasi-interdigitated back-contact perovskite solar cells fabricated on flexible substrates are studied. The photovoltaic parameters of the prepared flexible quasi-interdigitated back-contact perovskite solar cells (FQIBC PSCs) are obtained for the front- and rear-side illumination options. The dependences of the device’s open-circuit potential and short-circuit current on the illumination intensity are investigated to determine the main recombination pathways in the devices. Spectral response analysis of the devices demonstrates that the optical transmission losses can be minimized when FQIBC PSCs are illuminated from the front-side. Optoelectronic simulations are used to rationalize the experimental results. It is determined that the obtained FQIBC PSCs have high surface recombination losses, which hinder the device performance. The findings demonstrate a process for the fabrication of flexible back-contact PSCs and provide some directions for device performance improvements.
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Niu, Pingjuan, Li Pei, Yunhui Mei, Hua Bai e Jia Shi. "Optoelectronic Materials, Devices, and Applications". Applied Sciences 13, n. 13 (25 giugno 2023): 7514. http://dx.doi.org/10.3390/app13137514.

Testo completo
Abstract (sommario):
This Special Issue entitled “Optoelectronic Materials, Devices, and Applications” is devoted to gathering a broad array of research papers on the latest advances in the development of optoelectronic materials and devices of semiconductors, fiber optics, power electronics, microwaves, and terahertz [...]
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Miao, Sijia, Tianle Liu, Yujian Du, Xinyi Zhou, Jingnan Gao, Yichu Xie, Fengyi Shen, Yihua Liu e Yuljae Cho. "2D Material and Perovskite Heterostructure for Optoelectronic Applications". Nanomaterials 12, n. 12 (18 giugno 2022): 2100. http://dx.doi.org/10.3390/nano12122100.

Testo completo
Abstract (sommario):
Optoelectronic devices are key building blocks for sustainable energy, imaging applications, and optical communications in modern society. Two-dimensional materials and perovskites have been considered promising candidates in this research area due to their fascinating material properties. Despite the significant progress achieved in the past decades, challenges still remain to further improve the performance of devices based on 2D materials or perovskites and to solve stability issues for their reliability. Recently, a novel concept of 2D material/perovskite heterostructure has demonstrated remarkable achievements by taking advantage of both materials. The diverse fabrication techniques and large families of 2D materials and perovskites open up great opportunities for structure modification, interface engineering, and composition tuning in state-of-the-art optoelectronics. In this review, we present comprehensive information on the synthesis methods, material properties of 2D materials and perovskites, and the research progress of optoelectronic devices, particularly solar cells and photodetectors which are based on 2D materials, perovskites, and 2D material/perovskite heterostructures with future perspectives.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Lu, Yangbin, Kang Qu, Tao Zhang, Qingquan He e Jun Pan. "Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in Optoelectronic Devices". Nanomaterials 13, n. 3 (19 gennaio 2023): 419. http://dx.doi.org/10.3390/nano13030419.

Testo completo
Abstract (sommario):
Metal halide perovskites are promising energy materials because of their high absorption coefficients, long carrier lifetimes, strong photoluminescence, and low cost. Low-dimensional halide perovskites, especially one-dimensional (1D) halide perovskite nanowires (NWs), have become a hot research topic in optoelectronics owing to their excellent optoelectronic properties. Herein, we review the synthetic strategies and mechanisms of halide perovskite NWs in recent years, such as hot injection, vapor phase growth, selfassembly, and solvothermal synthesis. Furthermore, we summarize their applications in optoelectronics, including lasers, photodetectors, and solar cells. Finally, we propose possible perspectives for the development of halide perovskite NWs.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Wada, Osamu. "Progress in Femtosecond Optoelectronic Devices". Review of Laser Engineering 28, Supplement (2000): 168–69. http://dx.doi.org/10.2184/lsj.28.supplement_168.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Houlihan, Francis, Madan Kunnavakham, Alex Liddle, Peter Mirau, Om Nalamasu e John Rogers. "Microlens Arrays for Optoelectronic Devices." Journal of Photopolymer Science and Technology 15, n. 3 (2002): 497–515. http://dx.doi.org/10.2494/photopolymer.15.497.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Esfandyarpour, Majid, Erik C. Garnett, Yi Cui, Michael D. McGehee e Mark L. Brongersma. "Metamaterial mirrors in optoelectronic devices". Nature Nanotechnology 9, n. 7 (22 giugno 2014): 542–47. http://dx.doi.org/10.1038/nnano.2014.117.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Adams, A. R., D. J. Dunstan e E. P. O'Reilly. "Strained Layers for Optoelectronic Devices". Physica Scripta T39 (1 gennaio 1991): 196–203. http://dx.doi.org/10.1088/0031-8949/1991/t39/030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

ZHU, Ninghua, Yue HAO e Ming LI. "Optoelectronic devices and integration technologies". SCIENTIA SINICA Informationis 46, n. 8 (1 agosto 2016): 1156–74. http://dx.doi.org/10.1360/n112016-00059.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Yin, Lei, Xiaodong Pi e Deren Yang. "Silicon-based optoelectronic synaptic devices". Chinese Physics B 29, n. 7 (luglio 2020): 070703. http://dx.doi.org/10.1088/1674-1056/ab973f.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Li, Yat, Fang Qian, Jie Xiang e Charles M. Lieber. "Nanowire electronic and optoelectronic devices". Materials Today 9, n. 10 (ottobre 2006): 18–27. http://dx.doi.org/10.1016/s1369-7021(06)71650-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Johnston, A. H. "Radiation Effects in Optoelectronic Devices". IEEE Transactions on Nuclear Science 60, n. 3 (giugno 2013): 2054–73. http://dx.doi.org/10.1109/tns.2013.2259504.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Pautrat, J. L., E. Hadji, J. Bleuse e N. Magnea. "Resonant-cavity infrared optoelectronic devices". Journal of Electronic Materials 26, n. 6 (giugno 1997): 667–72. http://dx.doi.org/10.1007/s11664-997-0213-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Ghergia, Vittorio. "New materials for optoelectronic devices". Ceramics International 19, n. 3 (gennaio 1993): 181–90. http://dx.doi.org/10.1016/0272-8842(93)90039-t.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Chen, Lijue, Anni Feng, Maoning Wang, Junyang Liu, Wenjing Hong, Xuefeng Guo e Dong Xiang. "Towards single-molecule optoelectronic devices". Science China Chemistry 61, n. 11 (21 settembre 2018): 1368–84. http://dx.doi.org/10.1007/s11426-018-9356-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia