Letteratura scientifica selezionata sul tema "Optoelectronic devices"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Optoelectronic devices".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Optoelectronic devices"
Miroshnichenko, Anna S., Vladimir Neplokh, Ivan S. Mukhin e Regina M. Islamova. "Silicone Materials for Flexible Optoelectronic Devices". Materials 15, n. 24 (7 dicembre 2022): 8731. http://dx.doi.org/10.3390/ma15248731.
Testo completoKausar, Ayesha, Ishaq Ahmad, Malik Maaza, M. H. Eisa e Patrizia Bocchetta. "Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology". Journal of Composites Science 6, n. 12 (16 dicembre 2022): 393. http://dx.doi.org/10.3390/jcs6120393.
Testo completoSang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan e Dandan Sang. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction". Molecules 28, n. 3 (30 gennaio 2023): 1334. http://dx.doi.org/10.3390/molecules28031334.
Testo completoAlles, M. A., S. M. Kovalev e S. V. Sokolov. "Optoelectronic Defuzzification Devices". Физические основы приборостроения 1, n. 3 (15 settembre 2012): 83–91. http://dx.doi.org/10.25210/jfop-1203-083091.
Testo completoBhattacharya, Pallab, e Lily Y. Pang. "Semiconductor Optoelectronic Devices". Physics Today 47, n. 12 (dicembre 1994): 64. http://dx.doi.org/10.1063/1.2808754.
Testo completoOsten, W. "Advanced Optoelectronic Devices". Optics & Laser Technology 31, n. 8 (novembre 1999): 613–14. http://dx.doi.org/10.1016/s0030-3992(00)00008-6.
Testo completoJerrard, H. G. "Picosecond optoelectronic devices". Optics & Laser Technology 18, n. 2 (aprile 1986): 105. http://dx.doi.org/10.1016/0030-3992(86)90049-6.
Testo completoChapman, David. "Optoelectronic semiconductor devices". Microelectronics Journal 25, n. 8 (novembre 1994): 769. http://dx.doi.org/10.1016/0026-2692(94)90143-0.
Testo completoDjuris˘Ić, A. B., e W. K. Chan. "Organic Optoelectronic Devices". HKIE Transactions 11, n. 2 (gennaio 2004): 44–52. http://dx.doi.org/10.1080/1023697x.2004.10667955.
Testo completoVazhdaev, Konstantin, Marat Urakseev, Azamat Allaberdin e Kostantin Subkhankulov. "OPTOELECTRONIC DEVICES BASED ON DIFFRACTION GRATINGS FROM STANDING ELASTIC WAVES". Electrical and data processing facilities and systems 18, n. 3-4 (2022): 151–58. http://dx.doi.org/10.17122/1999-5458-2022-18-3-4-151-158.
Testo completoTesi sul tema "Optoelectronic devices"
Thompson, Paul. "II-VI optoelectronic devices". Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/726.
Testo completoVaughan, John. "Optoelectronic devices for spectrochemical sensing". Thesis, University of Manchester, 2005. https://www.research.manchester.ac.uk/portal/en/theses/optoelectronic-devices-for-spectrochemical-sensing(a6ea9f13-f235-4920-b63e-51e64a402327).html.
Testo completoHiggins, Steven Paul. "Computer simulation of optoelectronic devices". Thesis, University of Essex, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413634.
Testo completoShapira, Ofer Ph D. Massachusetts Institute of Technology. "Optical and optoelectronic fiber devices". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40511.
Testo completoIncludes bibliographical references (p. 111-119).
The ability to integrate materials with disparate electrical, thermal, and optical properties into a single fiber structure enabled the realization of fiber devices with diverse and complex functionalities. Amongst those, demonstrated first in our work, are the surface-emitting fiber laser, the hollow-core fiber amplifier, the thermally self-monitored high-power transmission fiber device, and the photo-detecting fiber-web based imaging system. This work presents the design, analysis, and characterization of those devices. It opens with a study of the transmission properties of the multimode hollow-core, photonic bandgap fiber constructed of a periodic multilayer cladding. A defect is then introduced into one of the cladding layers and the interaction between core and defect modes is investigated. The second chapter addresses the experimental problem encountered in many multimode waveguide applications: how to extract, and to some extent to control, the modal content of the field at the output of a waveguide. We developed a non-interferometric approach to achieve mode decomposition based on a modified phase retrieval algorithm that can yield the complete vectorial eigenmode content of any general waveguiding structure and demonstrated its validity experimentally. In the third chapter an active material is introduced into the hollow-core to form a surface-emitting fiber laser. A unique azimuthally anisotropic optical wave front results from the interplay between the cylindrical resonator, the anisotropic gain medium, and the linearly polarized axial pump. We show that the direction and polarization of the wave front are directly controlled by the pump polarization.
(cont.) In the last two chapters, a new type of fiber is presented, constructed of semiconducting, insulating, and conducting materials, which enables the integration of semiconductor devices into the fiber structure. In the first we demonstrate a fiber comprised of an optical transmission element designed for the transport of high power radiation and multiple thermal-detecting elements encompassing the hollow core for distributed temperature monitoring and real-time failure detection. In the second, we demonstrate optical imaging using large-area, three-dimensional optical-detector arrays, built from one-dimensional photodetecting optoelectronic fibers. Lensless imaging of an object is achieved using a phase retrieval algorithm.
by Ofer Shapira.
Ph.D.
Martins, Emiliano. "Light management in optoelectronic devices". Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6133.
Testo completoLi, Guangru. "Nanostructured materials for optoelectronic devices". Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/263671.
Testo completoDibos, Alan. "Nanofabrication of Hybrid Optoelectronic Devices". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17463975.
Testo completoEngineering and Applied Sciences - Applied Physics
Tan, Eugene. "Design, fabrication and characterization of N-channel InGaAsP-InP based inversion channel technology devices (ICT) for optoelectronic integrated circuits (OEIC), double heterojunction optoelectronic switches (DOES), heterojunction field-effect transistors (HFET), bipolar inversion channel field-effect transistors (BICFET) and bipolar inversion channel phototransistors (BICPT)". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ42767.pdf.
Testo completoKim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.
Testo completoDie vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Yiu, Wai-kin, e 姚偉健. "Plasmonic enhancement of organic optoelectronic devices". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/211120.
Testo completopublished_or_final_version
Physics
Master
Master of Philosophy
Libri sul tema "Optoelectronic devices"
Dragoman, Daniela. Advanced optoelectronic devices. Berlin: Springer, 1999.
Cerca il testo completoMooney, William J. Optoelectronic devices and principles. Englewood Cliffs, N.J: Prentice Hall, 1991.
Cerca il testo completoPiprek, Joachim, a cura di. Optoelectronic Devices. New York: Springer-Verlag, 2005. http://dx.doi.org/10.1007/b138826.
Testo completoBhattacharya, Pallab. Semiconductor optoelectronic devices. 2a ed. Upper Saddle River, NJ: Prentice Hall, 1997.
Cerca il testo completoDragoman, Daniela, e Mircea Dragoman. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5.
Testo completoBhattacharya, P. K. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1993.
Cerca il testo completoDragoman, Daniela. Advanced Optoelectronic Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
Cerca il testo completoBhattacharya, Pallab. Semiconductor optoelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1994.
Cerca il testo completoBhattacharya, Pallab Kumar. Semiconductor optoelectronic devices. London: Prentice-Hall International, 1994.
Cerca il testo completoPradhan, Basudev, a cura di. Perovskite Optoelectronic Devices. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8.
Testo completoCapitoli di libri sul tema "Optoelectronic devices"
Panish, Morton B., e Henryk Temkin. "Optoelectronic Devices". In Gas Source Molecular Beam Epitaxy, 322–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78127-8_10.
Testo completoLunardi, Leda, Sudha Mokkapati e Chennupati Jagadish. "Optoelectronic Devices". In Guide to State-of-the-Art Electron Devices, 265–74. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118517543.ch20.
Testo completoEvstigneev, Mykhaylo. "Optoelectronic Devices". In Introduction to Semiconductor Physics and Devices, 275–304. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08458-4_12.
Testo completoGupta, K. M., e Nishu Gupta. "Optoelectronic Devices". In Advanced Semiconducting Materials and Devices, 311–50. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19758-6_9.
Testo completoPatrick, Dale R., Stephen W. Fardo, Ray E. Richardson e Vigyan Vigs Chandra. "Optoelectronic Devices". In Electronic Devices and Circuit Fundamentals, Solution Manual, 76–86. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003403272-13.
Testo completoPatrick, Dale R., Stephen W. Fardo, Ray E. Richardson e Vigyan (Vigs) Chandra. "Optoelectronic Devices". In Electronic Devices and Circuit Fundamentals, 511–80. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003393139-13.
Testo completoNelson, A. W. "Key Optoelectronic Devices". In Electronic Materials, 67–89. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3818-9_7.
Testo completoLozes-Dupuy, F., H. Martinot e S. Bonnefont. "Optoelectronic semiconductor devices". In Perspectives for Parallel Optical Interconnects, 149–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49264-8_7.
Testo completoBanerjee, Amal. "Semiconductor Optoelectronic Devices". In Synthesis Lectures on Engineering, Science, and Technology, 245–74. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45750-0_14.
Testo completoDragoman, Daniela, e Mircea Dragoman. "Basic Concepts of Optoelectronic Devices". In Advanced Optoelectronic Devices, 1–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03904-5_1.
Testo completoAtti di convegni sul tema "Optoelectronic devices"
Ruden, P. P. "Materials-theory-based device modeling for III-nitride devices". In Optoelectronics '99 - Integrated Optoelectronic Devices, a cura di Gail J. Brown e Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344555.
Testo completoJabbour, Ghassan E., Bernard Kippelen, Neal R. Armstrong e Nasser Peyghambarian. "Organic electroluminescent devices: aluminum alkali-halide composite cathode for enhanced device performance". In Optoelectronics '99 - Integrated Optoelectronic Devices, a cura di Bernard Kippelen. SPIE, 1999. http://dx.doi.org/10.1117/12.348413.
Testo completo"Optoelectronic devices". In 2011 69th Annual Device Research Conference (DRC). IEEE, 2011. http://dx.doi.org/10.1109/drc.2011.5994526.
Testo completo"Optoelectronic devices". In 2013 71st Annual Device Research Conference (DRC). IEEE, 2013. http://dx.doi.org/10.1109/drc.2013.6633854.
Testo completoJain, Nikhil, Himanshu Singhvi, Siddharth Jain e Rishabh upadhyay. "Optoelectronic devices". In ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1742213.
Testo completoMcInerney, John G. "Bistable Optoelectronic Devices". In O-E/Fibers '87, a cura di Theodore E. Batchman, Richard F. Carson, Robert L. Galawa e Henry J. Wojtunik. SPIE, 1987. http://dx.doi.org/10.1117/12.967536.
Testo completoKobayashi, Tetsuro, e Bong Young Lee. "Ultrafast Optoelectronic Devices". In 1991 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1991. http://dx.doi.org/10.7567/ssdm.1991.s-e-2.
Testo completoTzolov, Velko P., Dazeng Feng, Stoyan Tanev e Z. Jan Jakubczyk. "Modeling tools for integrated and fiber optical devices". In Optoelectronics '99 - Integrated Optoelectronic Devices, a cura di Giancarlo C. Righini e S. Iraj Najafi. SPIE, 1999. http://dx.doi.org/10.1117/12.343726.
Testo completoLaporta, Paolo, Stefano Longhi, Gino Sorbello, Stefano Taccheo e Cesare Svelto. "Erbium-ytterbium miniaturized laser devices for optical communications". In Optoelectronics '99 - Integrated Optoelectronic Devices, a cura di Shibin Jiang e Seppo Honkanen. SPIE, 1999. http://dx.doi.org/10.1117/12.344495.
Testo completoHood, Patrick J., John C. Mastrangelo e Shaw H. Chen. "New materials technology for latching electro-optic devices". In Optoelectronics '99 - Integrated Optoelectronic Devices, a cura di Julian P. G. Bristow e Suning Tang. SPIE, 1999. http://dx.doi.org/10.1117/12.344610.
Testo completoRapporti di organizzazioni sul tema "Optoelectronic devices"
Kolodzey, James. SiGeC Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2000. http://dx.doi.org/10.21236/ada377834.
Testo completoKolodzey, James. SiGeC Alloys for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, agosto 1995. http://dx.doi.org/10.21236/ada295007.
Testo completoGeorge, Nicholas. Optoelectronic Materials Devices Systems Research. Fort Belvoir, VA: Defense Technical Information Center, settembre 1998. http://dx.doi.org/10.21236/ada358443.
Testo completoLaBounty, Christopher, Ali Shakouri, Patrick Abraham e John E. Bowers. Integrated Cooling for Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2000. http://dx.doi.org/10.21236/ada459476.
Testo completoMiller, David A. Ultrafast Quantum Well Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, luglio 2000. http://dx.doi.org/10.21236/ada384413.
Testo completoPeyghambarian, Nasser. (AASERT 95) Quantum Dot Devices and Optoelectronic Device Characterization. Fort Belvoir, VA: Defense Technical Information Center, maggio 1998. http://dx.doi.org/10.21236/ada379743.
Testo completoDing, Yujie J. Optoelectronic Devices Based on Novel Semiconductor Structures. Fort Belvoir, VA: Defense Technical Information Center, giugno 2006. http://dx.doi.org/10.21236/ada451063.
Testo completoHolub, M., D. Saha, D. Basu, P. Bhattacharya, L. Siddiqui e S. Datta. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits. Fort Belvoir, VA: Defense Technical Information Center, aprile 2009. http://dx.doi.org/10.21236/ada498345.
Testo completoChaung, S. L. Semiconductor Quantum-Well Lasers and Ultrafast Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, settembre 1996. http://dx.doi.org/10.21236/ada319314.
Testo completoLi, Baohua. Epitaxial Technologies for SiGeSn High Performance Optoelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, aprile 2015. http://dx.doi.org/10.21236/ad1012928.
Testo completo