Letteratura scientifica selezionata sul tema "Optical Interference Coating"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Optical Interference Coating".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Optical Interference Coating"
Journal, Baghdad Science. "Java Applet Technology for Design Interference Optical Coating". Baghdad Science Journal 8, n. 2 (12 giugno 2011): 495–502. http://dx.doi.org/10.21123/bsj.8.2.495-502.
Testo completoAL-gaffar, Alaa Nazar Abd. "Java Applet Technology for Design Interference Optical Coating". Baghdad Science Journal 8, n. 2 (12 giugno 2011): 495–502. http://dx.doi.org/10.21123/bsj.2011.8.2.495-502.
Testo completoSotsky, A. B., e E. A. Chudakov. "Reciprocity relations for interference coatings". Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 59, n. 2 (6 luglio 2023): 158–67. http://dx.doi.org/10.29235/1561-2430-2023-59-2-158-167.
Testo completoYudin, Nikolay, Mikhail Zinovev, Vladimir Kuznetsov, Maxim Kulesh, Sergey Podzyvalov, Elena Slyunko, Hussein Baalbaki, Alexey Lysenko, Andrey Kalsin e Akmal Gabdrakhmanov. "Development of a dichroic mirror based on Nb2O5/SiO2 for LiDAR systems". BIO Web of Conferences 145 (2024): 04045. http://dx.doi.org/10.1051/bioconf/202414504045.
Testo completoBärtschi, Manuel, Daniel Schachtler, Silvia Schwyn-Thöny, Thomas Südmeyer e Roelene Botha. "Investigation of the influence of plasma source power on the properties of magnetron sputtered Ta2O5 thin films". EPJ Web of Conferences 255 (2021): 03005. http://dx.doi.org/10.1051/epjconf/202125503005.
Testo completoWei, David T. "Ion beam interference coating for ultralow optical loss". Applied Optics 28, n. 14 (15 luglio 1989): 2813. http://dx.doi.org/10.1364/ao.28.002813.
Testo completoLee, Cheng-Chung, Kai Wu e Meng-Yen Ho. "Reflection coefficient monitoring for optical interference coating depositions". Optics Letters 38, n. 8 (12 aprile 2013): 1325. http://dx.doi.org/10.1364/ol.38.001325.
Testo completoYUDIN, N. N., M. M. ZINOVIEV, S. N. PODZYVALOV, V. S. KUZNETSOV, E. S. SLYUNKO, A. SH GABDRAKHMANOV, A. B. LYSENKO e A. YU KALSIN. "MID-IR ANTIREFLECTIVE INTERFERENCE OXIDE COATINGS FOR SEMICONDUCTOR OPTICAL SUBSTRATES". Izvestiya vysshikh uchebnykh zavedenii. Fizika 67, n. 5 (2024): 15–19. https://doi.org/10.17223/00213411/67/5/2.
Testo completoYudin, N. N., O. L. Antipov, A. I. Gribenyukov, V. V. Dyomin, M. M. Zinoviev, S. N. Podzivalov, E. S. Slyunko et al. "Influence of line-by-line processing technology on the optical breakthreshold of a ZnGeP2 single crystal". Izvestiya vysshikh uchebnykh zavedenii. Fizika, n. 11 (2021): 102–7. http://dx.doi.org/10.17223/00213411/64/11/102.
Testo completoTay, Justin C.-K., Basil T. Wong e Kok Hing Chong. "The impact of anti-reflective coating and optical bandpass interference filter on solar cell electrical-thermal performance". Journal of Mechanical Engineering and Sciences 15, n. 1 (9 marzo 2021): 7807–23. http://dx.doi.org/10.15282/jmes.15.1.2021.16.0616.
Testo completoTesi sul tema "Optical Interference Coating"
Womack, Gerald. "Anti-reflection coatings and optical interference in photovoltaics". Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25529.
Testo completoBarutcu, Burcu. "The Design And Production Of Interference Edge Filters With Plasma Ion Assisted Deposition Technique For A Space Camera". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614574/index.pdf.
Testo completoRavinet, Nolann. "Développement de revêtements interférentiels pour des imageurs X à haute résolution". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP127.
Testo completoInertial Confinement Fusion (ICF) is a preferred experimental approach to access extreme matter conditions, through the implosion of a laser-driven target. To characterize the implosion symmetry, a micrometer-resolution microscope, operating in the hard X-ray range, is being developed by the CEA (Commissariat à l'énergie atomique). TXI (Toroidal X-ray Imager), which will be installed at the NIF (National Ignition Facility), is a Wolter-type X-ray diagnostic where conical mirrors are replaced by toroidal mirrors. It is also a multi-channel diagnostic, operating at a nominal grazing angle of 0.6°, allowing imaging at 8.7 keV, 13 keV, and 17.5 keV. The required thicknesses of the multilayer coatings must become increasingly thin to image these energies. Different multilayer formulas (alternating two materials whose total period allows reflection of a certain wavelength, according to Bragg's law) have been optimized to meet TXI's specifications. The instrument's optical response was simulated using ray-tracing software. The coatings were then produced by sputtering deposition. For the next phase of the thesis, a preliminary study was conducted on designing an imager capable of operating up to 60 keV, as well as a pre-study on HiPIMS (High Power Impulse Magnetron Sputtering) technology to assess its benefits for thin-film quality
Bhattarai, Khagendra Prasad. "Interference of Light in Multilayer Metasurfaces: Perfect Absorber and Antireflection Coating". Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6680.
Testo completoAydogdu, Selcuk. "Near Infrared Interference Filter Design And The Production Withion-assisted Deposition Techniques". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614092/index.pdf.
Testo completoCheng, Wei-Chung. "Fabrication of Phase Masks by Immersion Interference Lithography and Study of Bottom Antireflective Coating Layers for Optical Lithography". 2004. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-3007200417014500.
Testo completoCheng, Wei-Chung, e 鄭惟中. "Fabrication of Phase Masks by Immersion Interference Lithography and Study of Bottom Antireflective Coating Layers for Optical Lithography". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/56259446045176173923.
Testo completo國立臺灣大學
光電工程學研究所
92
In this thesis, our study contains three parts. The first part is the study of utilizing hexamethyldisiloxane (HMDSO) film as the bottom antireflective coating (BARC) layer for deep ultraviolet (DUV) and vacuum ultraviolet (VUV) lithographies. We report a novel tri-layer bottom antireflective coating (BARC) design based on hexamethyldisiloxane (HMDSO) films working simultaneously at 157, 193 and 248nm wavelengths and a single-layer BARC film working in water at 193 nm wavelength. The required optical constant for each layer can be tuned by varying the gas flow rate ratio of oxygen to HMDSO in an electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) process The swing effect in the resist is experimentally shown to be reduced significantly by adding this BARC structure. A novel method for producing durable fused silica self-interference phase mask is described in the second part. The grating pattern is formed into I line positive photoresist (EPG510, Everlight) by 351 nm Ar+ laser interference lithography exposure and is transferred to a thin chromium layer via wet etching solution CR7, then reactive ion etching in CHF3/O2 plasma is used to etch the fused silica substrate. For phase masks working in 248 nm wavelength can be generated by using interferometric lithography. The optimized fabrication process allows phase mask of sub-micron period, centimeter long, with the zero-order intensity suppressed down to 8%. For the demonstration of its practicality, one optimized phase mask with 1.08 μm period and 5% zero-order diffraction efficiency is shown capable of fabricating fiber Bragg gratings with 7 dB transmission loss at 1.563 μm wavelength. Furthermore, another 0.44 μm period phase mask is used to produce a photoresist pattern with halved period. For phase masks working in 157 nm wavelength can be made from modified fused silica with 180 nm period by using immersion interference photolithography. The fabrication process of the phase mask is optimized to generate the largest intensity ratio of diffracted ±1-order to zero-order. The phase mask is demonstrated to produce a photoresist pattern with halved period (90 nm) when illuminated with a laser of 157 nm wavelength. The phase masks are also capable of generating two-dimensional patterns of holes and dots and serving as molds for imprint applications. The third part of this thesis is the study of the bubble effect for 193 nm wavelength immersion interference lithography.
Faiz, Fairuza. "Detection of Perfluoroalkyl Compounds with Polyvinylidene Fluoride Coated Optical Fibre". Thesis, 2019. https://vuir.vu.edu.au/40594/.
Testo completoLibri sul tema "Optical Interference Coating"
Kaiser, Norbert, e Hans K. Pulker, a cura di. Optical Interference Coatings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6.
Testo completoAmerica, Optical Society of, a cura di. Optical interference coatings: Postconference digest. Washington, DC: Optical Society of America, 2001.
Cerca il testo completoF, Abelès, Society of Photo-optical Instrumentation Engineers. e France. Ministère de la défense. Direction des recherches, études et techniques., a cura di. Optical interference coatings: 6-10 June 1994, Grenoble, France. Bellingham, Wash., USA: SPIE, 1994.
Cerca il testo completoOptical Interference Coatings Topical Meeting (1988 Tucson, Ariz.). Optical interference coatings: Summaries of papers presented at the Optical Interference Coatings Topical Meeting, April 12-15,1988, Tucson, Arizona. Washington, D.C: OSA, 1988.
Cerca il testo completoOptical Interference Coatings Topical Meeting (1992 Tucson, Ariz.). Optical interference coatings: Summaries of papers presented at the Optical Interference Coatings Topical Meeting, June 1-5, 1992, Tucson, Arizona. Washington, DC: Optical Society of America, 1992.
Cerca il testo completoOptical Interference Coatings Topical Meeting (1995 Tucson, Ariz.). Optical interference coatings: Summaries of the papers presented at the topical meeting, June 5-9, 1995, Tucson, Arizona. Washington, DC: OSA, 1995.
Cerca il testo completoAmerica, Optical Society of, a cura di. Optical interference coatings: June 7-12, 1998, Loews Ventana Canyon Resort, Tucson, Arizona. Washington, D.C: Optical Society of America, 1998.
Cerca il testo completoClaude, Amra, Macleod H. A, European Optical Society, European Commission. Directorate-General XII, Science, Research, and Development. e Society of Photo-optical Instrumentation Engineers., a cura di. Advances in optical interference coatings: 25-27 May 1999, Berlin, Germany. Bellingham, Wash., USA: SPIE, 1999.
Cerca il testo completoOptica, Robert Sargent e Anna Sytchkova. Optica Optical Interference Coatings Conference 2022. Optical Society of America, 2022.
Cerca il testo completoKaiser, Norbert, e Hans K. Pulker. Optical Interference Coatings. Springer, 2013.
Cerca il testo completoCapitoli di libri sul tema "Optical Interference Coating"
Friz, Martin, e Friedrich Waibel. "Coating Materials". In Optical Interference Coatings, 105–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_5.
Testo completoVukusic, Peter. "Natural Coatings". In Optical Interference Coatings, 1–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_1.
Testo completoStolz, Christopher J., e François Y. Génin. "Laser Resistant Coatings". In Optical Interference Coatings, 309–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_13.
Testo completoEscoubas, Ludovic, e Francois Flory. "Optical Thin Films for Micro-Components". In Optical Interference Coatings, 231–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_10.
Testo completoThielsch, Roland. "Optical Coatings for the DUV / VUV". In Optical Interference Coatings, 257–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_11.
Testo completoYulin, Sergey. "Multilayer Coatings for EUV/Soft X-ray Mirrors". In Optical Interference Coatings, 281–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_12.
Testo completoGatto, Alexandre. "Coatings for UV- Free Electron Lasers". In Optical Interference Coatings, 335–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_14.
Testo completoMartinu, Ludvik, e Jolanta E. Klemberg-Sapieha. "Optical Coatings on Plastics". In Optical Interference Coatings, 359–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_15.
Testo completoTempea, Gabriel, Vladislav Yakovlev e Ferenc Krausz. "Interference Coatings for Ultrafast Optics". In Optical Interference Coatings, 393–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_16.
Testo completoLi, Li. "Optical Coatings for Displays". In Optical Interference Coatings, 423–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36386-6_17.
Testo completoAtti di convegni sul tema "Optical Interference Coating"
Herrmann, R., R. Goetzelmann e R. Schneider. "Stability of Dielectric Multilayer Coatings Produced by Different Coating Technologies". In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oic.1988.thd11.
Testo completoCole, C., e J. W. Bowen. "Synthesis method for visible and infrared broadband spaceflight anti reflection coatings". In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/oic.1995.mb9.
Testo completoSchulz, U., N. Kaiser e A. Zöller. "Plasma Surface Modification and Coating of PMMA". In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tuf.2.
Testo completoHussmann, Eckart K., Nanning J. Arfsten, Hans-Ulrich Heusler, Peter H. Roehlen e Hermann J. Piehlke. "Antireflective coatings on very large substrates by the dip coating process". In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oic.1988.thd10.
Testo completoLubezky, I., e I. Szafranek. "AR coating design: An efficient coating for germanium in the 7.5-12.5μm region". In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oic.1988.fa1.
Testo completoMartinu, Ludvik. "Optical coating on plastics". In Optical Interference Coatings. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/oic.2001.mf1.
Testo completoHarry, G. M., H. Armandula, L. Zhang, G. Billingsley, D. Coyne e D. Shoemaker. "Advanced LIGO coating research". In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.fb5.
Testo completosamori, shingo, T. Sugawara, S. Agatsuma, M. Ishida, S. Yamamoto, M. Miyauchi, Y. Jiang e E. Nagae. "RAS Bias Voltage Coating". In Optical Interference Coatings. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/oic.2013.wc.3.
Testo completoPoitras, Daniel. "Facet Coating Design Robustness". In Optical Interference Coatings. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oic.2019.tc.4.
Testo completoGeorge, Linu, Sumedha e R. Vijaya. "Improving Antireflection by Double-sided Coating on Common Substrates for NIR range". In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/oic.2022.td.8.
Testo completo