Letteratura scientifica selezionata sul tema "Optical communications"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Optical communications".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Optical communications"
Okoshi, Takanori, e Akira Hirose. "Optical communication techniques; A prospect of optical communications." Journal of the Institute of Television Engineers of Japan 42, n. 5 (1988): 460–67. http://dx.doi.org/10.3169/itej1978.42.460.
Testo completoKuwahara, Hideo, e Jim Theodoras. "Optical communications". IEEE Communications Magazine 47, n. 11 (novembre 2009): 42. http://dx.doi.org/10.1109/mcom.2009.5307464.
Testo completoAgrell, Erik, Magnus Karlsson, Francesco Poletti, Shu Namiki, Xi (Vivian) Chen, Leslie A. Rusch, Benjamin Puttnam et al. "Roadmap on optical communications". Journal of Optics 26, n. 9 (17 luglio 2024): 093001. http://dx.doi.org/10.1088/2040-8986/ad261f.
Testo completoJukan, Admela, e Xiang Liu. "Optical communications networks". IEEE Communications Magazine 54, n. 8 (agosto 2016): 108–9. http://dx.doi.org/10.1109/mcom.2016.7537184.
Testo completoSunak, H. R. D. "Optical fiber communications". Proceedings of the IEEE 73, n. 10 (1985): 1533–34. http://dx.doi.org/10.1109/proc.1985.13332.
Testo completoChan, V. W. S. "Optical space communications". IEEE Journal of Selected Topics in Quantum Electronics 6, n. 6 (novembre 2000): 959–75. http://dx.doi.org/10.1109/2944.902144.
Testo completoKIKUCHI, Kazuo. "Coherent Optical Communications". Review of Laser Engineering 13, n. 6 (1985): 460–66. http://dx.doi.org/10.2184/lsj.13.460.
Testo completoElmirghani, J. M. H. "Optical wireless communications". IEEE Communications Magazine 41, n. 3 (marzo 2003): 48. http://dx.doi.org/10.1109/mcom.2003.1186544.
Testo completoKuwahara, Hideo, e Jim Theodoras. "Optical Communications: Optical Equinox [Guest Editorial]". IEEE Communications Magazine 45, n. 8 (agosto 2007): 24. http://dx.doi.org/10.1109/mcom.2007.4290310.
Testo completoWang, Jun-Bo, Yuan Jiao, Xiaoyu Song e Ming Chen. "Optimal training sequences for indoor wireless optical communications". Journal of Optics 14, n. 1 (8 dicembre 2011): 015401. http://dx.doi.org/10.1088/2040-8978/14/1/015401.
Testo completoTesi sul tema "Optical communications"
Boiyo, Duncan Kiboi, e Romeo Gamatham. "Optimization of flexible spectrum in optical transport networks". Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/14609.
Testo completoLiu, Jingjing. "Optically powered transceiver for optical wireless communications". Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509980.
Testo completoJin, Xian. "Integrated optical devices for free-space optical communications". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17406.
Testo completoDiaz, Ariel Gomez. "Ultrafast indoor optical wireless communications". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:2bd2257f-ae58-40f0-a10f-04e7b5336519.
Testo completoParand, Farivar. "Cellular optical wireless communications systems". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270654.
Testo completoKim, Inwoong. "SYNCHRONIZATION IN ADVANCED OPTICAL COMMUNICATIONS". Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3564.
Testo completoPh.D.
Other
Optics and Photonics
Optics
Walker, N. G. "Multiport detection for optical communications". Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383934.
Testo completoKingsbury, Ryan W. "Optical communications for small satellites". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101444.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 115-124).
Small satellites, particularly CubeSats, have become popular platforms for a wide variety of scientific, commercial and military remote sensing applications. Inexpensive commercial o the shelf (COTS) hardware and relatively low launch costs make these platforms candidates for deployment in large constellations that can offer unprecedented temporal and geospatial sampling of the entire planet. However, productivity for both individual and constellations of CubeSats in low earth orbit (LEO) is limited by the capabilities of the communications subsystem. Generally, these constraints stem from limited available electrical power, low-gain antennas and the general scarcity of available radio spectrum. In this thesis, we assess the ability of free space optical communication (lasercom) to address these limitations, identify key technology developments that enable its application in small satellites, and develop a functional prototype that demonstrates predicted performance. We first establish design goals for a lasercom payload archi- tecture that offers performance improvements (joules-per-bit) over radio-frequency (RF) solutions, yet is compatible with the severe size, weight and power (SWaP) constraints common to CubeSats. The key design goal is direct LEO-to-ground downlink capability with data rates exceeding 10 Mbps, an order of magnitude better than COTS radio solutions available today, within typical CubeSat SWaP constraints on the space terminal, and with similar COTS and low-complexity constraints on the ground terminal. After defining the goals for this architecture, we identify gaps in previous implementations that limit their performance: the lack of compact, power-efficient optical transmitters and the need for pointing capability on small satellites to be as much as a factor of ten better than what is commonly achieved today. One approach is to address these shortcomings using low-cost COTS components that are compatible with CubeSat budgets and development schedules. In design trade studies we identify potential solutions for the transmitter and pointing implementation gaps. Two distinct transmitter architectures, one based on a high-power laser diode and another using an optical amplifier, are considered. Analysis shows that both configurations meet system requirements, however, the optical amplifier offers better scalability to higher data rates. To address platform pointing limitations, we dene a staged control framework incorporating a COTS optical steering mechanism that is used to manage pointing errors from the coarse stage (host satellite body-pointing). A variety of ne steering solutions are considered, and microelectromechanical systems (MEMS) tip-tilt mirrors are selected due to their advantage in size, weight and power. We experimentally validate the designs resulting from the trade studies for these key subsystems. We construct a prototype transmitter using a modified COTS fiber amplifier and a directly-modulated seed laser capable of producing a 200mW average power, pulse position modulated optical output. This prototype is used to confirm power consumption predictions, modulation rate scalability (10 Mbps to 100 Mbps), and peak transmit power (e.g., 24.6W for PPM-128). The transmitter optical output, along with a simple loopback receiver, is used to validate the sensitivity of the avalanche photodiode receiver used for the ground receiver in the flight experiment configuration. The MEMS fine steering mechanisms, which are not rated for space use, are characterized using a purpose-built test apparatus. Characterization experiments of the MEMS devices focused on ensuring repeatable behavior (+/-0:11 mrad, 3-[sigma]) over the expected operating temperature range on the spacecraft (0°C to 40°C). Finally, we provide an assessment of the work that remains to move from the prototype to flight model and into on-orbit operations. Space terminal packaging and integration needs, as well as host spacecraft interface requirements are detailed. We also describe the remaining ground station integration tasks and operational procedures. Having developed a pragmatic COTS-based lasercom architecture for CubeSats, and having addressed the need for a compact laser transmitter and optical ne steering mechanisms with both analysis and experimental validation, this thesis has set the stage for the practical use of lasercom techniques in resource-constrained CubeSats which can yield order-of-magnitude enhancements in communications link eciency relative to existing RF technologies currently in use.
by Ryan W. Kingsbury.
Ph. D.
Joshi, Harita. "Modulation for optical wireless communications". Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55521/.
Testo completoBandele, Jeremiah Oluwatosin. "Extended free-space optical communications". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/37961/.
Testo completoLibri sul tema "Optical communications"
Gagliardi, Robert M. Optical communications. 2a ed. New York: Wiley, 1995.
Cerca il testo completoSibley, Martin. Optical Communications. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0.
Testo completoParadisi, Alberto, Rafael Carvalho Figueiredo, Andrea Chiuchiarelli e Eduardo de Souza Rosa, a cura di. Optical Communications. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97187-2.
Testo completoSibley, M. J. N. Optical Communications. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0.
Testo completoSibley, M. J. N. Optical Communications. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3.
Testo completoGagliardi, Robert M. Optical communications. Malabar, Fla: R.E. Krieger Pub. Co., 1988.
Cerca il testo completoSibley, M. J. N. Optical communications. 2a ed. Houndmills, Basingstoke: Macmillan, 1995.
Cerca il testo completoLecoy, Pierre. Fiber-optic communications. London: ISTE, 2008.
Cerca il testo completoKolimbiris, Harold. Fiber optics communications. Upper Saddle River, N.J: Pearson/Prentice Hall, 2004.
Cerca il testo completoGhassemlooy, Z., W. Popoola e S. Rajbhandari. Optical Wireless Communications. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2019. http://dx.doi.org/10.1201/9781315151724.
Testo completoCapitoli di libri sul tema "Optical communications"
Renk, Karl F. "Optical Communications". In Basics of Laser Physics, 567–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23565-8_33.
Testo completoRenk, Karl F. "Optical Communications". In Basics of Laser Physics, 623–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50651-7_33.
Testo completoWeik, Martin H. "optical communications". In Computer Science and Communications Dictionary, 1160. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12948.
Testo completoSibley, M. J. N. "Optical Fibre". In Optical Communications, 6–75. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_2.
Testo completoSibley, M. J. N. "Optical Transmitters". In Optical Communications, 76–152. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_3.
Testo completoSibley, M. J. N. "Optical Fibre". In Optical Communications, 7–46. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3_2.
Testo completoSibley, M. J. N. "Optical Transmitters". In Optical Communications, 47–67. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20718-3_3.
Testo completoSibley, Martin. "Optical Fibre". In Optical Communications, 9–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0_2.
Testo completoSibley, Martin. "Optical Transmitters". In Optical Communications, 79–152. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34359-0_3.
Testo completoSibley, M. J. N. "Introduction". In Optical Communications, 1–5. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13524-0_1.
Testo completoAtti di convegni sul tema "Optical communications"
Wilson, Glenn, Mauricio Uribe, Sigurd Moe, Andreas Ellmauthaler, Kwang Suh, Mikko Jaaskelainen, Jeff Bush e James Dupree. "All-Optical Subsea Sensing and Communications". In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32645-ms.
Testo completoDeng, Qiuzhuo, Lu Zhang, Hongqi Zhang, Zuomin Yang, Xiaodan Pang, Vjačeslavs Bobrovs, Sergei Popov et al. "Quantum Noise Secured Terahertz Communications". In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w2a.33.
Testo completoHacker, G. "Homodyne Detection for Optical Space Communications". In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/clr.1987.thb1.
Testo completoPark, Sung Min, e Yuriy Greshishchev. "Optical Communications". In 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE, 2007. http://dx.doi.org/10.1109/isscc.2007.373577.
Testo completoMasuda, S., H. Rokugawa, K. Yamaguchi, N. Fujimoto e S. Yamakoshi. "Architecture on Optical Processing for Communications". In Photonic Switching. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/phs.1989.sc286.
Testo completoMirasso, Claudio R., Ingo Fischer, Laurent Larger e Dimitris Syvridis. "“Chaotic Optical Communications”". In Frontiers in Optics. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/fio.2005.ftua6.
Testo completoHodgkinson, T. G., D. W. Smith, Richard Wyatt e D. J. Malyon. "Coherent optical communications". In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1985. http://dx.doi.org/10.1364/ofc.1985.mh1.
Testo completoUchida, Teiji. "Coherent Optical Communications". In 20th European Microwave Conference, 1990. IEEE, 1990. http://dx.doi.org/10.1109/euma.1990.336176.
Testo completoKanter, Gregory S. "Secure Optical Communications". In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cfc3.
Testo completoRichardson, David J. "Optical Communications using Microstructured Optical Fibers". In CLEO: Science and Innovations. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_si.2016.sw4i.1.
Testo completoRapporti di organizzazioni sul tema "Optical communications"
Haus, Joseph W., e Paul F. McManamon. Ladar and Optical Communications Institute (LOCI). Fort Belvoir, VA: Defense Technical Information Center, dicembre 2013. http://dx.doi.org/10.21236/ada591239.
Testo completoAndrews, L. C., R. L. Phillips, R. Crabbs, T. Leclerc e P. Sauer. Channel Characterization for Free-Space Optical Communications. Fort Belvoir, VA: Defense Technical Information Center, luglio 2012. http://dx.doi.org/10.21236/ada565323.
Testo completoObarski, Gregory E. Wavelength measurement system for optical fiber communications. Gaithersburg, MD: National Bureau of Standards, 1990. http://dx.doi.org/10.6028/nist.tn.1336.
Testo completoGosnell, T., Ping Xie e N. Cockroft. Optical-fiber laser amplifier for ultrahigh-speed communications. Office of Scientific and Technical Information (OSTI), aprile 1996. http://dx.doi.org/10.2172/231323.
Testo completoAdibi, Ali. Advanced Photonic Crystal-Based Integrated Structures for Optical Communications and Optical Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, novembre 2010. http://dx.doi.org/10.21236/ada563400.
Testo completoJoyce, K. A. Low-Cost Pointing-and-Tracking System for Optical Communications (PATSOC). Fort Belvoir, VA: Defense Technical Information Center, giugno 1988. http://dx.doi.org/10.21236/ada202921.
Testo completoHerczfeld, Peter R. High Speed Optical Transmitter and Receiver Development for Lidar and Communications. Fort Belvoir, VA: Defense Technical Information Center, settembre 1999. http://dx.doi.org/10.21236/ada630365.
Testo completoRabinovich, W. S., G. C. Gilbreath, Peter G. Goetz, R. Mahon, D. S. Kazter, K. Ikossi-Anasatasiou, S. Binari et al. InGaAs Multiple Quantum Well Modulating Retro-Reflector for Free Space Optical Communications. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2002. http://dx.doi.org/10.21236/ada461734.
Testo completoBrady, David J., James J. Coleman e Kenneth G. Purchase. Ultra-Fast Optical Signal Encoding and Analysis for Communications and Data Fusion Networks. Fort Belvoir, VA: Defense Technical Information Center, maggio 2000. http://dx.doi.org/10.21236/ada377846.
Testo completoBoroson, Don M. Optical Communications: A Compendium of Signal Formats, Receiver Architectures, Analysis Mathematics, and Performance Characteristics. Fort Belvoir, VA: Defense Technical Information Center, settembre 2005. http://dx.doi.org/10.21236/ada439968.
Testo completo