Tesi sul tema "Opérateurs de décalage (théorie des opérateurs)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Opérateurs de décalage (théorie des opérateurs)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Khochman, Abdallah. "Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique". Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13689/document.
Testo completoIn this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained
Tang, Yiyu. "Topics in Fourier analysis : uncertainty principles and lacunary approximation". Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2026.
Testo completoThis thesis is devoted to the study of uncertainty principles and approximation problems in Fourier analysis. It consists two parts.The first part focus on uncertainty principles in Fourier analysis. Using a technique recently invented by Avi Wigderson and Yuval Wigderson, we give a new proof of the classical Heisenberg uncertainty principle, hence answering several questions affirmatively posed by Wigderson & Wigderson. Also, we obtain some other new generalization on uncertainty principle, which illustrates the power of the new method.The second part is about approximation on weighted sequence spaces. We generalize an old result due to Douglas, Shapiro and shields on cyclic vectors of shift operator in sequence spaces, which asserts that if an element in l^2 spaces has a ``sparse" spectrum, then its shifts can not be concentrated on a proper subset, hence they must spread out in the whole space. This phenomenon can also be roughly considered as an uncertainty principle, and it is also true for p greater than 2 and false for 1
Michard, Romain. "Opérateurs arithmétiques matériels optimisés". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2008. http://tel.archives-ouvertes.fr/tel-00301285.
Testo completoAssal, Marouane. "Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0586/document.
Testo completoIn this work, we are interested in the spectral analysis of systems of semiclassical pseudodifferentialoperators. In the first part, we study the extension of the long time semiclassical Egorovtheorem in the case where the quantum Hamiltonian which generates the time evolution andthe initial quantum observable are two semiclassical pseudodifferential operators with matrixvaluedsymbols. Under an hyperbolicity condition on the principal symbol of the Hamiltonianwhich ensures the existence of the semiclassical projections, and for a class of observable thatare "semi-classically" block-diagonal with respect to these projections, we prove an Egorov theoremvalid in a large time interval of order log(h-1) known as the Ehrenfest time. Here h & 0is the semiclassical parameter.In the second part, we are interested in the spectral and scattering theories for self-adjointsystems of pseudodifferential operators. We develop a stationary approach for the study of thespectral shift function (SSF) associated to a pair of self-adjoint semiclassical Schrödinger operatorswith matrix-valued potentials. We prove a Weyl-type asymptotics with sharp remainderestimate on the SSF, and under the existence of a scalar escape function, a pointwise completeasymptotic expansion on its derivative. This last result is a generalisation in the matrix-valuedcase of a result of Robert and Tamura established in the scalar case near non-trapping energies.Our time-independent method allows us to treat certain potentials with energy-level crossings
Hachadi, Hicham. "Opérateurs de Hankel et théorie spectrale locale". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4723.
Testo completoThis thesis consists of two main parts, the first part is devoted to the study of Hankel operators of antiméromorphes symbols, more precisely, we are interested in the possibility of obtaining Hankel operators bounded (resp. compact, in Schatten classes) which the symbols are not necessarily polynomials.We will give in first step, the necessary and sufficient conditions for the operator H_ {f} defined on a ring in the complex plane is bounded (resp. compact in the p-th Schatten class) and we treat examples on which we show that the Hankel operators H_ {f} and H_ {Uf} are simultaneously bounded (resp. compact, in the Schatten classes) if and only if f is a Laurent polynomial and conditions set relate to its L-degree.The second part deals with common spectral properties of operators A and B satisfying the equation A ² = ABA and B ² = BAB. We will generalize the results of Christopher Schmoeger on equality different spectra of these operators, then we will expand the field of study of these operators in the direction of the local spectral theory (SVEP, Decomposability)
Tran-Oberlé, Chantal. "Analyticité en dimension infinie et théorie des opérateurs". Paris 11, 1987. http://www.theses.fr/1987PA112013.
Testo completoHuang, Yi. "Théorie des opérateurs sur les espaces de tentes". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS100/document.
Testo completoWe give a Calderón-Zygmund type machinery concerning the extrapolation theory for thesingular integral operators on tent spaces. For maximal regularity operators on tent space, wegive some optimal results by exploiting the structure of convolution integral operators and byusing the off-diagonal decay estimates of the underlying semigroup or resolvent family.We apply the previous harmonic and functional analysis techniques to estimate on tentspaces certain evolutionary integral operators arisen from the study of boundary value ellipticproblems and first order non-autonomous systems
Elhraichi, Jamal. "Décomposition canonique et classification de Nagy-Foias d'une contraction : cas des opérateurs normaux, cas des opérateurs de Toeplitz". Lyon 1, 1985. http://www.theses.fr/1985LYO11657.
Testo completoSkhiri, Haykel. "Opérateurs semi-Fredholm : structures et approximations". Lille 1, 1997. http://www.theses.fr/1997LIL10172.
Testo completoLe premier theme de cette partie est consacre aux operateurs -semi-fredholm. Nous montrons un theoreme qui etend a cette classe d'operateurs le theoreme de kato sur la stabilite des operateurs semi-fredholm par les petites perturbations. Nous nous interessons aussi aux points de continuite de la conorme de poids. Le second theme est consacre aux operateurs semi-fredholm. Nous calculons plusieurs formmules de distance liees aux operateurs semi-fredholm. Nous etudions la structure des composantes connexes semi-fredholm en utilisant d'autres moyens que ceux employees dans la premiere partie. Enfin, nous terminons par un exemple simplifie qui montre que certains resultats obtenus dans la premiere partie sont uniquement valables dans le cas separable
Turcu, Flavius. "Propriétés de factorisation pour les algèbres duales engendrées par certaines multi-contractions sphériques". Bordeaux 1, 2002. http://www.theses.fr/2002BOR12494.
Testo completoLe, Floch Bruno. "Correspondance AGT pour les opérateurs de surface". Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0008/document.
Testo completoThe sphere partition function of two-dimensional supersymmetric gauge theories with four supercharges is computed exactly using supersymmetric localization. For some gauge theories, explicit expressions are found to match with correlators in the two-dimensional Toda conformal field theory. This fits into the AGT correspondence, which relates supersymmetric fourdimensionalgauge theories with eight supercharges to correlators in the Toda theory. More precisely, the two-dimensional gauge theories can be inserted along a surface in a four-dimensional theory, thus forming half-BPS surface operators: such an insertion corresponds to the addition of a particular local operator (a degenerate vertex operator) in the Toda correlator.This enriched correspondence has several consequences. On the one hand, symmetries of Toda correlators imply analogues of Seiberg and Kutasov–Schwimmer dualities for two-dimensional gauge theories with four supercharges. On the other hand, exact gauge theory results yield previously unknown data in the Toda theory. This leads to a concrete proposal for the Toda braiding kernel of two semi-degenerate vertex operators, which holds important information about four-dimensional S-duality
Achouri, Abdelhak. "Approximation positive contractante dans un espace de Hilbert complexe". Montpellier 2, 1990. http://www.theses.fr/1990MON20117.
Testo completoLe, Floch Yohann. "Théorie spectrale inverse pour les opérateurs de Toeplitz 1D". Phd thesis, Université Rennes 1, 2014. http://tel.archives-ouvertes.fr/tel-01065441.
Testo completoAlphonse, Erick. "Macro-opérateurs en Programmation Logique Inductive : théorie et algorithmes". Paris 11, 2003. http://www.theses.fr/2003PA112334.
Testo completoMahzouli, Houssame. "Vecteurs cycliques, opérateurs de Toeplitz généralisés et régularité des algèbres de Banach". Lyon 1, 2005. http://www.theses.fr/2005LYO10241.
Testo completoGALA, Sadek. "Opérateurs de multiplication ponctuelle entre espace de Sobolev". Phd thesis, Université d'Evry-Val d'Essonne, 2005. http://tel.archives-ouvertes.fr/tel-00009577.
Testo completoMazouz, Abdelhak. "Orthogonalité de l'image au noyau de l'opérateur DeltaA,B(X) = AXB-X : Approximation en norme unitairement invariante d'un opérateur positif". Montpellier 2, 1995. http://www.theses.fr/1995MON20089.
Testo completoFieux, Etienne. "Classes caractéristiques en KK-théorie de C*-algèbres avec opérateurs". Toulouse 3, 1990. http://www.theses.fr/1990TOU30225.
Testo completoMaruyama, Fumitsuna. "Questions de théorie spectrale pour des opérateurs différentiels et pseudodifférentiels". Paris 13, 1997. http://www.theses.fr/1997PA132025.
Testo completoDetcherry, Renaud. "Analyse semi-classique des opérateurs courbes en TQFT". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066252/document.
Testo completoIn this thesis we study the asymptotics of some invariants of 3-manifolds, known as "quantum invariants" which were defined by Witten, Reshetikhin and Turaev. These invariants are part of a TQFT structure, that is a monoidal functor for a category of cobordism to the category of complex vector spaces. In this setting, curves on surfaces induce endomorphisms of TQFT vector spaces, called curve operators, which are one of the main object in our study. All these invariants depend of an integer parameter r, and we are interested in their behavior when r tends to infinity. We can then see that quantum invariants are related to more geometric objects, like the moduli space of conjugacy classes of SU2 representations of the fundamental group of a surface. The thesis is divided in 3 parts: in the first one we introduce the notion of TQFT and the Witten-Reshetikhin-Turaev invariants, then we give basic properties of the SU2-moduli spaces and explain the general approach of geometric quantification. In the second one we present a result on the asymptotics of matrix coefficients of curve operators. Using skein calculus and a theorem of Bullock, we express the first two terms of their expansion in terms of trace functions on the SU2-moduli space associated to multicurves. The final part gives an asymptotic expansion of matrix coefficents of quantum representations. A geometric model for TQFT vector spaces is defined, and we show that curve operators can be seen as Toeplitz operators in this model. Standard tools of semi-classical analysis allow us to deduce the result from this
Veyrat-Charvillon, Nicolas. "Opérateurs arithmétiques matériels pour des applications spécifiques". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2007. http://tel.archives-ouvertes.fr/tel-00438603.
Testo completoSanJuan, Eric. "Algèbres de Heyting avec opérateurs booléens et applications aux systèmes d'information". Lyon 1, 2000. http://www.theses.fr/2000LYO10290.
Testo completoBernard, Frédéric. "Etude des fonctions prox-régulières en dimension infinie". Montpellier 2, 2003. http://www.theses.fr/2003MON20210.
Testo completoFrantz, Nicolas. "Théorie spectrale et théorie de la diffusion pour des opérateurs non-auto-adjoints". Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0125.
Testo completoIn this thesis, we consider non-self-adjoint operators in Hilbert spaces of the form «H=H_0+CWC», where «H_0» is self-adjoint, «W» is bounded and «C» is bounded and relatively compact with respect to «H_0». We suppose that «C» is a metric operator and that «C(H_0-z)^{-1}C» is uniformly bounded in «zinmathbb{C}setminusmathbb{R}». We define the spectral singularities of «H» as the points of the essential spectrum «lambdainsigma_{mathrm{ess}}(H)» such that «C(H-lambdapm ivarepsilon)^{-1}CW» does not have a limit as «varepsilonto0^+». First we study the spectral structure of this model. We prove that the spectral singularities of «H» are in one-to-one correspondence with the eigenvalues, associated to resonant states, of an extension of «H» to a larger Hilbert space. Next, we show that the asymptotically disappearing states for «H», i.e. the set of vectors «varphi» such that «e^{pm itH}varphito0» as «ttoinfty», coincide with the generalized eigenstates of «H» corresponding to eigenvalues «lambdainmathbb{C}», «mpmathrm{Im}(lambda)>0». Finally, we define the absolutely continuous spectral subspace of «H» and show that it satisfies «Hi_{mathrm{ac}}(H)=Hi_{mathrm{p}}(H^star)^perp», where «Hi_{mathrm{p}}(H^star)» stands for the point spectrum of «H^star». We thus obtain a direct sum decomposition of the Hilbert spaces in terms of spectral subspaces of «H». Next we study the asymptotic behavior of «e^{pm itH}varphi» as «t» to «infty» through scattering theory. We define the regularized wave operators associated to «H» and «H_0» by «W_pm(H,H_0):=displaystyleslim_{trightarrowinfty} e^{pm itH}r_mp(H)Pi_mathrm{p}(H^star)^perp e^{mp itH_0}» where «Pi_mathrm{p}(H^star)» is the projection onto «Hi_mathrm{p}(H^star)» and «r_mp» is a rational function that regularizes the `incoming/outgoing spectral singularities' of «H». We prove the existence and study the properties of the regularized wave operators. In particular we show that they are asymptotically complete if «H» does not have any spectral singularity. Finally we construct solutions to the abstract Schrödinger equation associated to «H» in the case where the non-self-adjoint perturbation «CWC» is unbounded. Our results apply to Schrödinger operators with complex potentials
Ginoux, Nicolas. "Opérateurs de Dirac sur les sous-variétés". Nancy 1, 2002. http://www.theses.fr/2002NAN10047.
Testo completoIn this thesis, we study the spectrum of two Dirac operators defined on a submanifold. First, we prove a lower bound for an operator which is canonically associated with the Dirac-Witten's operator. We then show that equality holds in these inequalities only if the submanifold admits a t̀̀wisted Killing'' spinor. On the other hand, we give extrinsic upper bounds for the smallest eigenvalues of the Dirac operator on the submanifold twisted with its normal bundle. Completing C. Bär's work for hypersurfaces of the hyperbolic space, we obtain new estimates for hypersurfaces of manifolds admitting twistor-spinors. We finally extend these results to submanifolds of some particular Kählerian manifolds. The existence of Kählerian Killing spinors on such manifolds yields new eigenvalue estimates for CR-submanifolds. As a consequence, we obtain a comparison theorem for the eigenvalues of Dirac operators between Kählerian submanifolds of the complex projective space
Souabni, Boutheina. "Etude de la densité d'états surfaciques de certains opérateurs de Schrödinger". Paris 7, 2008. http://www.theses.fr/2008PA077041.
Testo completoIn this thesis, we are interested in the study of the integrated density of surface states of the almost periodic schrôdinger operators, of the anderson type and of the n-body problem. We begin the first chapter by establishing one result on the approximation of the spectrum of the schrôdinger continuum operator by the spectrum of the analogous discrete operator. Then we establish a relation then between the spectrum and the support of the integrated density of surface states. In the second chapter we prove that the integrated density of surface states of the anderson model is the limit of the discrete integrated density of surface states. These results are made general in the fourth chapter. In the third chapter we establish some estimates of reduction off the diagonal and estimates of perturbation effects of the potential in the norm of the trace operators. The last chapter addresses the n-body problem from a general point of view
Vogel, Martin. "Propriétés spectrales des opérateurs non-auto-adjoints aléatoires". Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS018/document.
Testo completoIn this thesis we are interested in the spectral properties of random non-self-adjoint operators. Weare going to consider primarily the case of small random perturbations of the following two types of operators: 1. a class of non-self-adjoint h-differential operators Ph, introduced by M. Hager [32], in the semiclassical limit (h→0); 2. large Jordan block matrices as the dimension of the matrix gets large (N→∞). In case 1 we are going to consider the operator Ph subject to small Gaussian random perturbations. We let the perturbation coupling constant δ be e (-1/Ch) ≤ δ ⩽ h(k), for constants C, k > 0 suitably large. Let ∑ be the closure of the range of the principal symbol. Previous results on the same model by M. Hager [32], W. Bordeaux-Montrieux [4] and J. Sjöstrand [67] show that if δ ⪢ e(-1/Ch) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the pseudospectrumup to a distance ⪢ (-h ln δ h) 2/3 to the boundary of ∑. We will study the one- and two-point intensity measure of the random point process of eigenvalues of the randomly perturbed operator and prove h-asymptotic formulae for the respective Lebesgue densities describing the one- and two-point behavior of the eigenvalues in ∑. Using the density of the one-point intensity measure, we will give a complete description of the average eigenvalue density in ∑ describing as well the behavior of the eigenvalues at the pseudospectral boundary. We will show that there are three distinct regions of different spectral behavior in ∑. The interior of the of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly. Using the h-asymptotic formula for density of the two-point intensity measure we will show that two eigenvalues of randomly perturbed operator in the interior of ∑ exhibit close range repulsion and long range decoupling. In case 2 we will consider large Jordan block matrices subject to small Gaussian random perturbations. A result by E.B. Davies and M. Hager [16] shows that as the dimension of the matrix gets large, with probability close to 1, most of the eigenvalues are close to a circle. They, however, only state a logarithmic upper bound on the number of eigenvalues in the interior of that circle. We study the expected eigenvalue density of the perturbed Jordan block in the interior of thatcircle and give a precise asymptotic description. Furthermore, we show that the leading contribution of the density is given by the Lebesgue density of the volume form induced by the Poincarémetric on the disc D(0, 1)
Bourin, Jean-Christophe. "Compressions, dilations and inequalities for operators on finite and infinite dimensional spaces". Cergy-Pontoise, 2004. http://biblioweb.u-cergy.fr/theses/04CERG0216.pdf.
Testo completo1. Commuting positive operators and their compressions : inequalities. 2. Operator convex functions and monotone convex functions : convexity inequalities modulo unitary congruences. 3. Dilation, Davis characterization of operator convexity : reciprocity ? 4. Any operator whose essential numerical rang contains the unit disc, dilates any strict contractions. 5. Inequalities for norms, eigenvalues, singular values
Al, homsi Wael. "Continuité des *- représentations et opérateurs de Hankel". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4755/document.
Testo completoContinuity of *-representation and Hankel operators This thesis consists of two independent parts. In the first part of this work, we establish a necessary and sufficient condition for a *-representation a *-semigroup abelian topological S is continuous at the identity e of S. The results are obtained by means of a theorem of integral representation with respect to a measure supported by continuous semi characters. We then give several applications of these results. The second part of this thesis deals with Hankel operators anti-meromorphic symbols on an annulus. In the first place we put in place the framework of the general theory of Hankel operators associated with a Hilbert space of holomorphic functions A^2(μ) of square integrable with respect to a measure admitting relative index times. Next, we show that the space of Laurent polynomials is dense in A ^ 2 ( μ ) it allows us to clearly define the Hankel operators and study their spectral properties. In particular, many examples, we establish necessary and sufficient conditions, in terms of time, ensuring continuity compactness and Schatten classes of membership of the Hankel operators
Martin, Alexandre. "Théorie de Mourre et opérateurs de Schrödinger : De nouvelles classes d'opérateurs conjugués". Thesis, Cergy-Pontoise, 2018. http://www.theses.fr/2018CERG0978/document.
Testo completoIn this thesis, we are interested in the study of the essential spectrum of Schrödinger operators and more particulary in the obtention of a Limiting Absorption Principle for these operators. This Limiting Absorption Principle consists on the existence of a limit for the resolvent operator when the spectral parameter is near the essential spectrum and permits to know some properties about the group generated by the Schrödinger Hamiltonian we study. A technique to prove this Limiting Absorption Principle is to use the Mourre theory. This theory needs to use an other operator called the conjugate operator. When we want to apply the Mourre theory to Schrödinger operators, we usually used a conjugate operatornamed the generator of dilations. This operator implies some conditions of decay on the derivatives of the potentials which can be a problem in certain cases. In this thesis, we will apply the Mourre theory with other types of conjugate operators wich, for some of them, does not imply any conditions on the derivatives of the potential.In a first part, we will be interested in Schrödinger operators on the euclidian space. We will show a Limiting Absorption Principle at positive energy, a Limiting Absorption principle at zero energy and the absence of eigenvalue embedded in the essential spectrum. In a second part, we will be interested in Schrödinger operators on wave guides for which we will prove a Limiting Absorption Principle far thresholds and near thresholds
Réjasse, Olivier. "Sous espace invariants, factorisation et reflexivité des opérateurs polynômialement bornés". Bordeaux 1, 2004. http://www.theses.fr/2004BOR12944.
Testo completoGuille-Biel, Claire. "Contribution à l'étude des opérateurs de Schrödinger discrets". Aix-Marseille 1, 1997. https://tel.archives-ouvertes.fr/tel-00965017.
Testo completoAkkouche, Sofiane. "Sur la theorie spectrale des opérateurs de Schrödinger discrets". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14098/document.
Testo completoThis thesis deals with the spectral theory of discrete Schrödinger operators H(λ) := - Δ + b on Zd and more generally on in#nite weighted graphs. Precisely, we study the behavior of the spectral functions which represent the spectral bounds of these operators. One of the main results is the obtention of a necessary and sufficient condition on the potential b such that the bottom of the spectrum is stricly positive.The study of the top of the spectrum is also treated.We first study these questions for discrete Schrödinger operators on Zd. The regularity of this space provides specific results in this particular case. Then we extend our work to the case of infinite weighted graphs. Moreover, the technics developed in this framework allow us to study the asymptotic behavior of the bottom of the spectrum for large values of λ
Barusseau, Benoit. "Propriétés spectrales des opérateurs de Toeplitz". Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14027/document.
Testo completoThis thesis deals with the spectral properties of the Toeplitz operators in relation to their associated symbol. In the first part, we give some classical results about Hardy space, model spaces and Bergman space. Afterwards, we expose some results about Toeplitz operator on the Hardy space. In particular, we discuss their spectrum and essential spectrum. Our work is inspired from two facts which have been proved on the Hardy space. First, considering a Toeplitz operator T, the norm, essential norm, spectral radius of T and the supremum of its symbol are equal. Secondly, on the Hardy space, spectrum, essential spectrum and essential range are strongly related. We answer the question of the equality between the norms, the spectral radius and the supremum of the symbol and between spectrum and essential range on the Bergman space. We look at these two properties on the Bergman space when the symbol is radial or quasihomogeneous. We answer these questions using the Berezin transform, the Mellin coefficients and the mean value of the symbol. The last part deals with the classical Szegö theorem which underline a link between the eigenvalues of a Toeplitz matrix sequence and its symbol. We give a result of the same type on Bergman space considering harmonic symbol wich have a continuous extension. We give a generalization, considering the sequence of the compressions of a Toeplitz operator on a sequence of model spaces
Alkanjo, Hasan. "Spectre étendu des opérateurs et applications". Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10271/document.
Testo completoThis thesis is based on a relatively new spectral notion, called extended spectrum of operators. In the first part, we provide general properties of extended spectrum of an operator in some special cases, such as the case of finite dimension and the case of invertible operator. We focused in the second part on characterizing the extended spectrum of truncated shift operator Su. In particular, we give a complete description of the extended eigenvectors associated to each extended eigenvalue of Sb, where b is a Blaschke product. In the third part, we describe the extended spectrum and the extended eigenvectors of a very important class of operators , that is the normal operators. We first start by describing these last sets for the product of a positive and a self-adjoint operator which are both injective. After, we use the Fuglede-Putnam theorem to describe the same sets for normal operators, in terms of their spectral measure. In the last part, we apply our results from the last three parts on concrete examples. In particular, we address the problem of extended eigenvectors of operators defined in a finite dimension space. Next, we show the existence of a quasinilpotent compact operator whose extended spectrum is reduced to {1}. Finally, we study two Cesaro operators which are very important in applications
Ouedraogo, Marie-Françoise. "Extension of the canonical trace and associated determinants". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00725230.
Testo completoHarrabi, Ali. "Pseudospectres d'opérateurs intégraux et différentiels : application à la physique mathématique". Toulouse 1, 1998. http://www.theses.fr/1998TOU10031.
Testo completoMenares, Ricardo. "Nombres d'intersection arithmétiques et opérateurs de Hecke sur les courbes modulaires". Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00360171.
Testo completoCette thèse s'inscrit dans l'étude des opérateurs de Hecke en tant que correspondances sur les courbes modulaires X_0(N). D'une part, nous étudions la relation entre l'algèbre de Hecke et la théorie d'Arakelov; d'autre part, nous entreprenons un début d'étude de la dynamique de l'action des opérateurs de Hecke sur l'ensemble des courbes elliptiques supersingulières.
On considère la courbe modulaire X_0(N) munie de la métrique de Poincaré (métrique hyperbolique). Cette métrique présente des singularités aux points elliptiques et pointes. On suppose que N est sans facteurs carrés. On note XN le modèle entier de cette courbe donné par l'interprétation modulaire étudiée par Deligne et Rapoport. On définit un groupe de Chow arihmétique généralisé CH(N) tel que ses éléments sont représentés par des couples (D,g) avec D un diviseur de Weil sur XN et g un courant de Green admissible pour la métrique de Poincaré. J.-B. Bost et U. Kühn ont développé, de manière indépendante, des généralisations de la théorie d'intersection arithmétique d'Arakelov qui fournissent une forme bilinéaire à valeurs réelles sur CH(N) x CH(N) dans ce cadre où la métrique est singulière. On étudie aussi une version à coefficients réels et à équivalence numérique près de CH(N), que l'on note CH(N)*.
Nous montrons dans cette thèse que les correspondances de Hecke agissent sur CH(N) et que cette action est autoadjointe par rapport à la forme bilinéaire de Bost-Kühn. Ceci permet de diagonaliser cette action sur CH(N)* et de définir ses sous-espaces propres. Ensuite nous étudions le faisceau dualisant relatif, considéré comme un élément de CH(N)*, ainsi que sa décomposition selon les sous-espaces propres. Nous calculons l'auto-intersection de la composante propre correspondante à la pointe à l'infini en utilisant des résultats d'Ulf Kühn.
L'action des opérateurs de Hecke sur les fibres spéciales de XN définit une dynamique qui preserve les points supersinguliers. Nous nous intéressons à étudier cette action sur les points supersinguliers des fibres de bonne réduction et nous calculons, à l'aide des résultats de Deuring et Eichler, la fréquence asymptotique avec laquelle un point supersingulier donné visite un autre point du même type.
Ostermann, Maëva. "Estimation des normes des fonctions d'un opérateur". Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/70389.
Testo completoGrébert, Benoît. "Problèmes spectraux inversés pour les systèmes akns sur la droite réelle". Paris 13, 1990. http://www.theses.fr/1990PA132011.
Testo completoLatrémolière, Evelyne. "Théorie de la diffusion et résonances pour des métriques perturbées". Nantes, 1994. http://www.theses.fr/1994NANT2006.
Testo completoChabi, Amina. "Quelques applications des opérateurs monotones à la théorie des équations aux dérivées partielles". Paris 6, 1988. http://www.theses.fr/1988PA066130.
Testo completoMa, Wen-Jie. "Higher-Point Conformal Blocks". Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/70384.
Testo completoConformal field theories (CFTs) play a central role in modern theoretical physics. The study of CFTs leads to a deep understanding of both string theory and condensed matter physics. In a CFT, correlation functions are essential ingredients for the computation of physical observables. Due to the existence of the operator product expansion (OPE), conformal correlation functions can be separated into their dynamical parts, which constitute of the OPE coefficients as well as the conformal dimensions, and their kinematic parts, dubbed the conformal blocks, which are completely fixed by conformal symmetry. Since the conformal bootstrap was revived in 2008, several techniques have been developed to compute the four-point conformal blocks during the last decade. In contrast to the four-point blocks, conformal blocks with more than four points, which are notoriously difficult to compute, have not been studied in great detail, although these higher-point conformal blocks are useful for the implementation of higher-point conformal bootstrap as well as the study of AdS Witten diagrams. In this thesis, by using the embedding space OPE, we obtain expressions for the scalar M-point conformal blocks with scalar exchanges in the comb configuration as well as scalar six-and seven-point conformal blocks with scalar exchanges in the snowflake and extended snowflake configurations. Moreover, we propose a set of Feynman-like rules to directly write down an explicit form for any global conformal block in one and two dimensions. Based on the position space OPE, we prove the Feynman-like rules by construction. Finally, after discussing the symmetry properties of the conformal blocks, we develop a systematical way to write down the bootstrap equations for higher-point correlation functions.
Masse, Christian. "Conjecture des diviseurs de zéro et propriété (T)". Metz, 2004. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2004/Masse.Christian.SMZ0401.pdf.
Testo completoThis work behaves two independent parties : the first chapter draft of the zero divisor conjecture, in the framework of abelian groups, nilpotent groups, semi-simple groups and at last discrete groups. In the second chapter, we prove that the group Sp (n,1) has property (T) of Kazhdan of two different manners ; the first proof is based on ideas of M. Cowling and U. Haargerup, the second on ideas of B. Bekka, P. Harpe and A. Valette
Ould, Ahmed Salem Cheikh [Ahmadou]. "Approximation de points fixes d'une contraction". Montpellier 2, 1998. http://www.theses.fr/1998MON20035.
Testo completoBouamama, Widad. "Opérateur pseudo-Fredholm et opérateur de Riesz". Lille 1, 2003. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2003/50376-2003-267.pdf.
Testo completoEnacheanu, Florin Bogdan. "Outils d'aide à la conduite pour le opérateurs des réseaux de distribution". Grenoble INPG, 2007. http://www.theses.fr/2007INPG0115.
Testo completoDetennining a distribution network topology characterized by minimal Joule losses leads to solve a discrete, non linear and combinatory optimization problem. Various approaches have been addressed. After exhaustive and heuristic approaches a meta heuristic approach, based on the graph and matroids theory, was developed in order to generate an optimal radial topology for a given network load and production state. A procedure was perfonned in order to realize the "step by step" branches exchange sequences for the transition between two radial topologies. An optimal radial network topology, with real load curves, was identified by hourly optimizations. Finally optimization algorithms for partially meshed topologies were finally realized
Chrayteh, Houssam. "Problèmes de valeurs propres pour des opérateurs multivoques". Poitiers, 2012. http://theses.univ-poitiers.fr/25162/2012-Chrayteh-Houssam-These.pdf.
Testo completoThe aim of our research is to study the existence and regularity of solutions for eigenvalue problems involving a →p-multivoque operator A : V → P(V*) on a smooth domain Ω C Rᶰ. Through N-functions, we construct a →p-multivoque Leray-Lions "strongly monotonic" operator on an anisotropic Orlicz-Sobolev space. We note that the theoretical formulation of problems related to such operator is essentially based on the notion of Clarke subdifferential. For this reason, we introduce new variational methods that match the resolution of these issues in the "subcritical" case where compactness plays an important role and critical case when we lose compactness. Various applications are given to illustrate our abstract results, for example, an anisotropic operator with variable exponents and an operator with a Hardy type weight
Pruvost, Benoît. "Problèmes de similarités, opérateurs de type Foguel et calcul fonctionnel". Lille 1, 2003. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2003/50376-2003-307.pdf.
Testo completoSbai, Youssef. "Analyse semi-classique des opérateurs périodiques perturbés". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0270/document.
Testo completoThis Ph.D thesis deals with some spectral properties of two specific classes of two periodic operators. We are firstly interested in the model periodic perturbed by operator depending on a small semi-classical constant. We obtain an asymptotic behavior of the eigenvalue counting function in the spectral gaps with scharp remainder estimate. The second model studied in this thesis is a two-dimensional periodic elliptic second order opera-tor perturbed by operator depending on a large coupling constant. We also give the description of the counting function of eigenvalues when the coupling constant tends to infinity. The last part of this thesis highlights the study the spectrum of a Schrödinger operator perturbed by a fast oscillatingdecaying potential depending on a small parameter