Letteratura scientifica selezionata sul tema "OOD generalization"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "OOD generalization".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "OOD generalization"
Ye, Nanyang, Lin Zhu, Jia Wang, Zhaoyu Zeng, Jiayao Shao, Chensheng Peng, Bikang Pan, Kaican Li e Jun Zhu. "Certifiable Out-of-Distribution Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 9 (26 giugno 2023): 10927–35. http://dx.doi.org/10.1609/aaai.v37i9.26295.
Testo completoGwon, Kyungpil, e Joonhyuk Yoo. "Out-of-Distribution (OOD) Detection and Generalization Improved by Augmenting Adversarial Mixup Samples". Electronics 12, n. 6 (16 marzo 2023): 1421. http://dx.doi.org/10.3390/electronics12061421.
Testo completoZhu, Lin, Xinbing Wang, Chenghu Zhou e Nanyang Ye. "Bayesian Cross-Modal Alignment Learning for Few-Shot Out-of-Distribution Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 9 (26 giugno 2023): 11461–69. http://dx.doi.org/10.1609/aaai.v37i9.26355.
Testo completoLiao, Yufan, Qi Wu e Xing Yan. "Invariant Random Forest: Tree-Based Model Solution for OOD Generalization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 12 (24 marzo 2024): 13772–81. http://dx.doi.org/10.1609/aaai.v38i12.29283.
Testo completoBai, Haoyue, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, S. H. Gary Chan e Zhenguo Li. "DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 8 (18 maggio 2021): 6705–13. http://dx.doi.org/10.1609/aaai.v35i8.16829.
Testo completoShao, Youjia, Shaohui Wang e Wencang Zhao. "A Causality-Aware Perspective on Domain Generalization via Domain Intervention". Electronics 13, n. 10 (11 maggio 2024): 1891. http://dx.doi.org/10.3390/electronics13101891.
Testo completoSu, Hang, e Wei Wang. "An Out-of-Distribution Generalization Framework Based on Variational Backdoor Adjustment". Mathematics 12, n. 1 (26 dicembre 2023): 85. http://dx.doi.org/10.3390/math12010085.
Testo completoZhang, Lily H., e Rajesh Ranganath. "Robustness to Spurious Correlations Improves Semantic Out-of-Distribution Detection". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 12 (26 giugno 2023): 15305–12. http://dx.doi.org/10.1609/aaai.v37i12.26785.
Testo completoYu, Runpeng, Hong Zhu, Kaican Li, Lanqing Hong, Rui Zhang, Nanyang Ye, Shao-Lun Huang e Xiuqiang He. "Regularization Penalty Optimization for Addressing Data Quality Variance in OoD Algorithms". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 8 (28 giugno 2022): 8945–53. http://dx.doi.org/10.1609/aaai.v36i8.20877.
Testo completoCao, Linfeng, Aofan Jiang, Wei Li, Huaying Wu e Nanyang Ye. "OoDHDR-Codec: Out-of-Distribution Generalization for HDR Image Compression". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 1 (28 giugno 2022): 158–66. http://dx.doi.org/10.1609/aaai.v36i1.19890.
Testo completoTesi sul tema "OOD generalization"
Araujo, Cynthia Berenice. "The Effects of Sleep for Generalization in 12 Month-Old Infants". Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/555522.
Testo completoAbecidan, Rony. "Stratégies d'apprentissage robustes pour la détection de manipulation d'images". Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0025.
Testo completoToday, it is easier than ever to manipulate images for unethical purposes. This practice is therefore increasingly prevalent in social networks and advertising. Malicious users can for instance generate convincing deep fakes in a few seconds to lure a naive public. Alternatively, they can also communicate secretly hidding illegal information into images. Such abilities raise significant security concerns regarding misinformation and clandestine communications. The Forensics community thus actively collaborates with Law Enforcement Agencies worldwide to detect image manipulations. The most effective methodologies for image forensics rely heavily on convolutional neural networks meticulously trained on controlled databases. These databases are actually curated by researchers to serve specific purposes, resulting in a great disparity from the real-world datasets encountered by forensic practitioners. This data shift addresses a clear challenge for practitioners, hindering the effectiveness of standardized forensics models when applied in practical situations.Through this thesis, we aim to improve the efficiency of forensics models in practical settings, designing strategies to mitigate the impact of data shift. It starts by exploring literature on out-of-distribution generalization to find existing strategies already helping practitioners to make efficient forensic detectors in practice. Two main frameworks notably hold promise: the implementation of models inherently able to learn how to generalize on images coming from a new database, or the construction of a representative training base allowing forensics models to generalize effectively on scrutinized images. Both frameworks are covered in this manuscript. When faced with many unlabeled images to examine, domain adaptation strategies matching training and testing bases in latent spaces are designed to mitigate data shifts encountered by practitioners. Unfortunately, these strategies often fail in practice despite their theoretical efficiency, because they assume that scrutinized images are balanced, an assumption unrealistic for forensic analysts, as suspects might be for instance entirely innocent. Additionally, such strategies are tested typically assuming that an appropriate training set has been chosen from the beginning, to facilitate adaptation on the new distribution. Trying to generalize on a few images is more realistic but much more difficult by essence. We precisely deal with this scenario in the second part of this thesis, gaining a deeper understanding of data shifts in digital image forensics. Exploring the influence of traditional processing operations on the statistical properties of developed images, we formulate several strategies to select or create training databases relevant for a small amount of images under scrutiny. Our final contribution is a framework leveraging statistical properties of images to build relevant training sets for any testing set in image manipulation detection. This approach improves by far the generalization of classical steganalysis detectors on practical sets encountered by forensic analyst and can be extended to other forensic contexts
Nachtigäller, Kerstin [Verfasser]. "Long-term word learning in 2-year-old children - How does narrative input about pictures and objects influence retention and generalization of newly acquired spatial prepositions? / Kerstin Nachtigäller". Bielefeld : Universitätsbibliothek Bielefeld, 2015. http://d-nb.info/1078112452/34.
Testo completoLibri sul tema "OOD generalization"
Klemenhagen, Kristen C., Franklin R. Schneier, Abby J. Fyer, H. Blair Simpson e René Hen. Adult Hippocampal Neurogenesis, Pattern Separation, and Generalization. A cura di Israel Liberzon e Kerry J. Ressler. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190215422.003.0006.
Testo completoSpeyer, Augustin, e Helmut Weiß. The prefield after the Old High German period. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198813545.003.0005.
Testo completoHegedűs, Veronika. Particle-verb order in Old Hungarian and complex predicates. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198747307.003.0006.
Testo completoProchazka, Stephan. The Northern Fertile Crescent. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198701378.003.0009.
Testo completoDutton, Denis. Aesthetics and Evolutionary Psychology. A cura di Jerrold Levinson. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199279456.003.0041.
Testo completoCapitoli di libri sul tema "OOD generalization"
Bubboloni, Daniela, Pablo Spiga e Thomas Stefan Weigel. "Odd Dimensional Orthogonal Groups". In Normal 2-Coverings of the Finite Simple Groups and their Generalizations, 87–99. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-62348-6_6.
Testo completoBenczúr, András A., e Ottilia Fülöp. "Fast Algorithms for Even/Odd Minimum Cuts and Generalizations". In Algorithms - ESA 2000, 88–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45253-2_9.
Testo completoHeismann, Olga, e Ralf Borndörfer. "A Generalization of Odd Set Inequalities for the Set Packing Problem". In Operations Research Proceedings 2013, 193–99. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07001-8_26.
Testo completoEriksson, Fredrik. "Military History and Military Theory". In Handbook of Military Sciences, 1–16. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-030-02866-4_90-1.
Testo completoCao, Hongye, Shangdong Yang, Jing Huo, Xingguo Chen e Yang Gao. "Enhancing OOD Generalization in Offline Reinforcement Learning with Energy-Based Policy Optimization". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230288.
Testo completoGu, Pengfei, e Daao Yu. "OOD Problem Research in Biochemistry Based on Backdoor Adjustment". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia231392.
Testo completoAngryk, Rafal, Roy Ladner e Frederick E. Petry. "Generalization Data Mining in Fuzzy Object-Oriented Databases". In Data Warehousing and Mining, 2121–40. IGI Global, 2008. http://dx.doi.org/10.4018/978-1-59904-951-9.ch126.
Testo completo"generalization, n." In Oxford English Dictionary. 3a ed. Oxford University Press, 2023. http://dx.doi.org/10.1093/oed/8342955435.
Testo completoWilliamson, John B., e Fred C. Pampel. "Toward an Empirical and Theoretical Synthesis". In Old-Age Security in Comparative Perspective, 207–27. Oxford University PressNew York, NY, 1993. http://dx.doi.org/10.1093/oso/9780195068597.003.0010.
Testo completoAdeleke, S. A. "A generalization of Jordan groups". In Automorphisms of First-Order Structures, 233–40. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198534686.003.0010.
Testo completoAtti di convegni sul tema "OOD generalization"
Li, Limin, Kuo Yang, Wenjie Du, Zhongchao Yi, Zhengyang Zhou e Yang Wang. "EMoNet: An environment causal learning for molecule OOD generalization". In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1552–56. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822221.
Testo completoWang, Haoliang, Chen Zhao e Feng Chen. "Feature-Space Semantic Invariance: Enhanced OOD Detection for Open-Set Domain Generalization". In 2024 IEEE International Conference on Big Data (BigData), 8244–46. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825325.
Testo completoXu, Xingcheng, Zihao Pan, Haipeng Zhang e Yanqing Yang. "It Ain’t That Bad: Understanding the Mysterious Performance Drop in OOD Generalization for Generative Transformer Models". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/727.
Testo completoYu, Junchi, Jian Liang e Ran He. "Mind the Label Shift of Augmentation-based Graph OOD Generalization". In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.01118.
Testo completoBai, Haoyue, Fengwei Zhou, Lanqing Hong, Nanyang Ye, S. H. Gary Chan e Zhenguo Li. "NAS-OoD: Neural Architecture Search for Out-of-Distribution Generalization". In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00821.
Testo completoYe, Nanyang, Kaican Li, Haoyue Bai, Runpeng Yu, Lanqing Hong, Fengwei Zhou, Zhenguo Li e Jun Zhu. "OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization". In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.00779.
Testo completoZhang, Min, Junkun Yuan, Yue He, Wenbin Li, Zhengyu Chen e Kun Kuang. "MAP: Towards Balanced Generalization of IID and OOD through Model-Agnostic Adapters". In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. http://dx.doi.org/10.1109/iccv51070.2023.01095.
Testo completoZhu, Yun, Haizhou Shi, Zhenshuo Zhang e Siliang Tang. "MARIO: Model Agnostic Recipe for Improving OOD Generalization of Graph Contrastive Learning". In WWW '24: The ACM Web Conference 2024. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3589334.3645322.
Testo completoLi, Wenjun, Pradeep Varakantham e Dexun Li. "Generalization through Diversity: Improving Unsupervised Environment Design". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/601.
Testo completoTeney, Damien, Ehsan Abbasnejad, Simon Lucey e Anton Van den Hengel. "Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization". In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01626.
Testo completo