Letteratura scientifica selezionata sul tema "Nuclear physics"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Nuclear physics".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Nuclear physics"

1

Saitdjanov, Shavkat. "Solving Problems In Nuclear Physics". American Journal of Interdisciplinary Innovations and Research 03, n. 05 (7 maggio 2021): 1–6. http://dx.doi.org/10.37547/tajiir/volume03issue05-01.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bethe, Hans A. "Nuclear physics". Reviews of Modern Physics 71, n. 2 (1 marzo 1999): S6—S15. http://dx.doi.org/10.1103/revmodphys.71.s6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Hodgson, P. E. "Nuclear physics". Contemporary Physics 29, n. 2 (marzo 1988): 187–91. http://dx.doi.org/10.1080/00107518808213760.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hodgson, P. E. "Nuclear physics". Contemporary Physics 33, n. 4 (luglio 1992): 267–70. http://dx.doi.org/10.1080/00107519208223975.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li, Xing Zhong. "Nuclear Physics for Nuclear Fusion". Fusion Science and Technology 41, n. 1 (gennaio 2002): 63–68. http://dx.doi.org/10.13182/fst02-a201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Feshbach, Herman, e Ernest M. Henley. "Theoretical Nuclear Physics: Nuclear Reactions". Physics Today 45, n. 12 (dicembre 1992): 84–85. http://dx.doi.org/10.1063/1.2809918.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Eismont, V. P. "Nuclear physics and nuclear power". Atomic Energy 86, n. 6 (giugno 1999): 388–91. http://dx.doi.org/10.1007/bf02673188.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Ong, J. F., Meng-Hock Koh e I. H. Hashim. "Nuclear photonics: Laser-driven nuclear physics". IOP Conference Series: Materials Science and Engineering 1285, n. 1 (1 luglio 2023): 012003. http://dx.doi.org/10.1088/1757-899x/1285/1/012003.

Testo completo
Abstract (sommario):
Abstract High-power lasers can produce high-energy gamma rays, charged particles, and neutrons and induce various types of nuclear reactions. In Extreme Light Infrastructure Nuclear Physics (ELI-NP), Romania, high-power lasers are entering a new realm of 10 PW peak power, capable of obtaining a focused intensity of 1023 Wcm–2. Such an intense laser pulse will be used for studies relevant to nuclear physics, high-field physics, and quantum electrodynamics, or the combination of laser gamma experiments. Here, we describe how a laser is used to drive high-energy photons and accelerate electrons and protons. These particles can be used for secondary interactions in nuclear physics. Laser-driven nuclear physics can be a source of nuclear isomers for applications in medicine and astrophysics.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Koura, Hiroyuki. "ICONE23-1392 OUTREACH ACTIVITY BY USING THREE-DIMENSIONAL NUCLEAR CHART : UNDERSTANDING NUCLEAR PHYSICS AND NUCLEAR ENERGY". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_180.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Fulton, Brian. "Nuclear physics exaggerated". Physics World 10, n. 12 (dicembre 1997): 17–18. http://dx.doi.org/10.1088/2058-7058/10/12/16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Nuclear physics"

1

Alhomaidhi, Sultan Mohammad A. "Search for Maximum Nuclear Compression in a Model of Nucleus-Nucleus Collisions". Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1448216380.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Chen, Jiunn-Wei. "Effective field theory for nuclear physics /". Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/9795.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Persram, Declan. "Delta production in nucleon-nucleon scattering and pion production in nucleus-nucleus collisions". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23931.

Testo completo
Abstract (sommario):
We present a calculation of $ Delta$ production cross section in the one-boson-exchange model for the reaction $NN to N Delta.$ Our calculation is in quantitative agreement with a previous calculation by Huber and Aichelin (1). The effect of the $NN to N Delta$ anisotropic differential cross section on $ pi$ production in Au + Au collisions at a kinetic energy of $1{GeV over A}$ is studied. We find that there is no large effect on the final $ pi$ transverse momentum spectra.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ramanan, Sunethra. "Investigations of the renormalization group approach to the nucleon-nucleon interaction". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1173106852.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Bemmerer, Daniel. "Precise nuclear physics for the Sun". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-95439.

Testo completo
Abstract (sommario):
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of light- years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astro- physics (LUNA) 0.4 MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bemmerer, Daniel. "Precise nuclear physics for the sun". Forschungszentrum Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-97364.

Testo completo
Abstract (sommario):
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of lightyears away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Konig, Sebastian, Harald W. Griesshammer, H. W. Hammer e Kolck U. van. "Nuclear Physics Around the Unitarity Limit". AMER PHYSICAL SOC, 2017. http://hdl.handle.net/10150/624335.

Testo completo
Abstract (sommario):
We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of the conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Medinaceli, Villegas Eduardo <1976&gt. "Astroparticle physics with nuclear track detectors". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/850/1/Tesi_Medinaceli_Eduardo.pdf.

Testo completo
Abstract (sommario):
This thesis is mainly about the search for exotic heavy particles -Intermediate Mass Magnetic Monopoles, Nuclearites and Q-balls with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5230 m, Bolivia), establishing upper limits (90% CL) in the absence of candidates, which are among the best if not the only one for all three kind of particles. A preliminary study of the background induced by cosmic neutron in CR39 at the SLIM site, using Monte Carlo simulations. The measurement of the elemental abundance of the primary cosmic ray with the CAKE experiment on board of a stratospherical balloon; the charge distribution obtained spans in the range 5≤Z≤31. Both experiments were based on the use of plastic Nuclear Track Detectors, which records the passage of ionizing particles; by using some chemical reagents such passage can be make visible at optical microscopes.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Medinaceli, Villegas Eduardo <1976&gt. "Astroparticle physics with nuclear track detectors". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/850/.

Testo completo
Abstract (sommario):
This thesis is mainly about the search for exotic heavy particles -Intermediate Mass Magnetic Monopoles, Nuclearites and Q-balls with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5230 m, Bolivia), establishing upper limits (90% CL) in the absence of candidates, which are among the best if not the only one for all three kind of particles. A preliminary study of the background induced by cosmic neutron in CR39 at the SLIM site, using Monte Carlo simulations. The measurement of the elemental abundance of the primary cosmic ray with the CAKE experiment on board of a stratospherical balloon; the charge distribution obtained spans in the range 5≤Z≤31. Both experiments were based on the use of plastic Nuclear Track Detectors, which records the passage of ionizing particles; by using some chemical reagents such passage can be make visible at optical microscopes.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Alsalmi, Sheren. "Measurement of the Nuclear Dependence of F_2 and R=Sigma_L/Sigma_T in The Nucleon Resonance Region". Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent155655860740778.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Nuclear physics"

1

Kamal, Anwar. Nuclear Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-38655-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Crosby, Susannah. Nuclear physics. Chandni Chowk, Delhi: Global Media, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

David, Sang. Nuclear physics. Walton-on-Thames, Surrey: Nelson, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sang, David. Nuclear physics. Walton-on-Thames: Nelson, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Sang, David. Nuclear physics. Basingstoke: Macmillan Education, 1990.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Henderson, Harry. Nuclear physics. New York: Facts on File, 1998.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

National Research Council (U.S.). Nuclear Physics Panel., a cura di. Nuclear physics. Washington, D.C: National Academy Press, 1986.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Feshbach, Herman. Theoretical nuclear physics: Nuclear reactions. New York: Wiley, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sitenko, A. G. Theory of nucleus: Nuclear structure and nuclear interaction. Dordrecht: Kluwer Academic, 1997.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Mukhin, K. N. Experimental nuclear physics. Moscow: Mir Publishers, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Nuclear physics"

1

Poston, John W. "Health Physics". In Nuclear Energy, 355–59. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-6618-9_17.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Poston, John W. "Health Physics". In Nuclear Energy, 455–61. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5716-9_17.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Shafer, Wade H. "Nuclear Physics". In Masters Theses in the Pure and Applied Sciences, 358. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0393-0_32.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Shafer, Wade H. "Nuclear Physics". In Masters Theses in the Pure and Applied Sciences, 281. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5969-6_33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kunstatter, Gabor, e Saurya Das. "Nuclear Physics". In A First Course on Symmetry, Special Relativity and Quantum Mechanics, 285–302. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55420-0_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Shafer, Wade H. "Nuclear Physics". In Masters Theses in the Pure and Applied Sciences, 313. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3412-9_33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Shafer, Wade H. "Nuclear Physics". In Masters Theses in the Pure and Applied Sciences, 351. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3474-7_33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Krane, Kenneth S. "Nuclear Physics". In AIP Physics Desk Reference, 544–67. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Shafer, Wade H. "Nuclear Physics". In Masters Theses in the Pure and Applied Sciences, 348. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0599-6_33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Shafer, Wade H. "Nuclear Physics". In Masters Theses in the Pure and Applied Sciences, 338. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5197-9_33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Nuclear physics"

1

Andrejtscheff, W., e D. Elenkov. "Nuclear Physics, Neutron Physics and Nuclear Energy". In IX International School on Nuclear Physics, Neutron Physics and Nuclear Energy. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540346.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Noro, T., O. V. Miklukho, E. Obayashi, V. A. Andreev, M. N. Andronenko, G. M. Amalsky, S. L. Belostotski et al. "Study of nuclear medium effect on hadrons in nuclei by nucleon quasifree scattering". In NUCLEAR PHYSICS IN THE 21st CENTURY:International Nuclear Physics Conference INPC 2001. AIP, 2002. http://dx.doi.org/10.1063/1.1470278.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Souza, Sergio R., Odair D. Gonçalves, Celso L. Lima, Lauro Tomio e Vito R. Vanin. "Nuclear Physics". In XX Brazilian Meeting. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528733.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Bertulani, C. A., M. E. Bracco, B. V. Carlson e M. Nielsen. "Nuclear Physics". In VIII Jorge André Swieca Summer School. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814529358.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Guinet, D. "Nuclear Physics". In Second European Biennial Conference. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814535489.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Ohta, Masahisa, e Bernard Remaud. "NUCLEAR PHYSICS". In Tours Symposium on Nuclear Physics. WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814537964.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Brandan, María-Ester. "Nuclear Physics". In XIV Symposium on Nuclear Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539128.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Cunningham, Beth A. "Nuclear Physics". In WOMEN IN PHYSICS: 4th IUPAP International Conference on Women in Physics. AIP, 2013. http://dx.doi.org/10.1063/1.4795251.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Savage, Martin. "Nuclear Physics". In 34th annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.256.0021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Tamura, Hirokazu. "Strangeness Nuclear Physics". In Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018). Journal of the Physical Society of Japan, 2019. http://dx.doi.org/10.7566/jpscp.26.011003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Nuclear physics"

1

Riley, Mark, e Akis Pipidis. The Mechanical Analogue of the "Backbending" Phenomenon in Nuclear-structure Physics. Florida State University, maggio 2008. http://dx.doi.org/10.33009/fsu_physics-backbending.

Testo completo
Abstract (sommario):
This short pedagogical movie illustrates an effect in nuclear physics called backbending which was first observed in the study of the rotational behavior of rapidly rotating rare-earth nuclei in Stockholm, Sweden in 1971. The video contains a mechanical analog utilizing rare-earth magnets and rotating gyroscopes on a turntable along with some historic spectra and papers associated with this landmark discovery together with its explanation in terms of the Coriolis induced uncoupling and rotational alignment of a specific pair of particles occupying high-j intruder orbitals. Thus backbending represents a crossing in energy of the groundstate, or vacuum, rotational band by another band which has two unpaired high-j nucleons (two quasi-particles) with their individual angular momenta aligned with the rotation axis of the rapidly rotating nucleus. Backbending was a major surprise which pushed the field of nuclear structure physics forward but which is now sufficiently well understood that it can be used as a precision spectroscopic tool providing useful insight for example, into nuclear pairing correlations and changes in the latter due to blocking effects and quasi-particle seniority, nuclear deformation, the excited configurations of particular rotational structures and the placement of proton and neutron intruder orbitals at the Fermi surface.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Garg, U., W. Reviol e R. Kaczarowski. Nuclear physics. Office of Scientific and Technical Information (OSTI), agosto 1995. http://dx.doi.org/10.2172/166386.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lamproe, Juliann. Nuclear Physics. Office of Scientific and Technical Information (OSTI), giugno 2023. http://dx.doi.org/10.2172/1988540.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kippen, Karen E., Steven R. Elliott e William C. Louis, III. Nuclear Physics: MiniBooNE. Office of Scientific and Technical Information (OSTI), giugno 2014. http://dx.doi.org/10.2172/1127474.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kunz, P. D. Theoretical nuclear physics. Office of Scientific and Technical Information (OSTI), ottobre 1990. http://dx.doi.org/10.2172/6472791.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Author, Not Given. (Theoretical nuclear physics). Office of Scientific and Technical Information (OSTI), gennaio 1991. http://dx.doi.org/10.2172/5219332.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

French, J. B., e D. S. Koltun. Theoretical nuclear physics. Office of Scientific and Technical Information (OSTI), giugno 1992. http://dx.doi.org/10.2172/7277100.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Rost, E., e J. R. Shephard. Theoretical nuclear physics. Office of Scientific and Technical Information (OSTI), agosto 1992. http://dx.doi.org/10.2172/7106073.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Haxton, W. (Nuclear theory). [Research in nuclear physics]. Office of Scientific and Technical Information (OSTI), gennaio 1990. http://dx.doi.org/10.2172/6354905.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Scarlett, Harry Alan. Nuclear Weapons Computational Physics. Office of Scientific and Technical Information (OSTI), maggio 2020. http://dx.doi.org/10.2172/1630832.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia