Letteratura scientifica selezionata sul tema "Nsga-Iii"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Nsga-Iii".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Nsga-Iii"
Ariza Vesga, Luis Felipe, Johan Sebastián Eslava Garzón e Rafael Puerta Ramirez. "EF1-NSGA-III: An evolutionary algorithm based on the first front to obtain non-negative and non-repeated extreme points". Ingeniería e Investigación 40, n. 3 (21 ottobre 2020): 55–69. http://dx.doi.org/10.15446/inginvestig.v40n3.82906.
Testo completoAwad, Mahmoud, Mohamed Abouhawwash e H. N. Agiza. "On NSGA-II and NSGA-III in Portfolio Management". Intelligent Automation & Soft Computing 32, n. 3 (2022): 1893–904. http://dx.doi.org/10.32604/iasc.2022.023510.
Testo completoSun, Xingping, Ye Wang, Hongwei Kang, Yong Shen, Qingyi Chen e Da Wang. "Modified Multi-Crossover Operator NSGA-III for Solving Low Carbon Flexible Job Shop Scheduling Problem". Processes 9, n. 1 (29 dicembre 2020): 62. http://dx.doi.org/10.3390/pr9010062.
Testo completoZou, Ying, Zuguo Chen, Shangyang Zhu e Yingcong Li. "NSGA-III-Based Production Scheduling Optimization Algorithm for Pressure Sensor Calibration Workshop". Electronics 13, n. 14 (19 luglio 2024): 2844. http://dx.doi.org/10.3390/electronics13142844.
Testo completoGeng, Huantong, Zhengli Zhou, Junye Shen e Feifei Song. "A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization". Entropy 25, n. 1 (21 dicembre 2022): 13. http://dx.doi.org/10.3390/e25010013.
Testo completoMuteba Mwamba, John Weirstrass, Leon Mishindo Mbucici e Jules Clement Mba. "Multi-Objective Portfolio Optimization: An Application of the Non-Dominated Sorting Genetic Algorithm III". International Journal of Financial Studies 13, n. 1 (28 gennaio 2025): 15. https://doi.org/10.3390/ijfs13010015.
Testo completoQu, Zhanghao, Peng Zhang, Yaohua Hu, Huanbo Yang, Taifeng Guo, Kaili Zhang e Junchang Zhang. "Optimal Design of Agricultural Mobile Robot Suspension System Based on NSGA-III and TOPSIS". Agriculture 13, n. 1 (14 gennaio 2023): 207. http://dx.doi.org/10.3390/agriculture13010207.
Testo completoYi-Hui Chen, Yi-Hui Chen, Heng-Zhou Ye Yi-Hui Chen e Feng-Yi Huang Heng-Zhou Ye. "The Configuration Design of Electronic Products Based on improved NSGA-III with Information Feedback Models". 電腦學刊 33, n. 4 (agosto 2022): 081–94. http://dx.doi.org/10.53106/199115992022083304007.
Testo completoThawkar, Shankar, Law Kumar Singh e Munish Khanna. "Multi-objective techniques for feature selection and classification in digital mammography". Intelligent Decision Technologies 15, n. 1 (24 marzo 2021): 115–25. http://dx.doi.org/10.3233/idt-200049.
Testo completoTrưởng, Nguyễn Huy, e Dinh-Nam Dao. "New hybrid between NSGA-III with multi-objective particle swarm optimization to multi-objective robust optimization design for Powertrain mount system of electric vehicles". Advances in Mechanical Engineering 12, n. 2 (febbraio 2020): 168781402090425. http://dx.doi.org/10.1177/1687814020904253.
Testo completoTesi sul tema "Nsga-Iii"
Al, Samrout Marwa. "Approches mono et bi-objective pour l'optimisation intégrée des postes d'amarrage et des grues de quai dans les opérations de transbordement". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH21.
Testo completoInternational maritime transport is vital for global trade, representing over 85% of exchanges, with 10.5 billion tons transported each year. This mode of transport is the most economical and sustainable, contributing only 2.6% of CO2 emissions. In France, the maritime sector accounts for 1.5% of GDP and nearly 525,000 jobs. Maritime ports, crucial for the logistics chain, facilitate the transshipment of goods and increasingly adopt digital solutions based on artificial intelligence to improve their efficiency. France has eleven major seaports, seven of which are located in mainland France.The thesis focuses on optimizing container terminals to enhance the efficiency and performance of ports. It addresses the issues of berth allocation planning and crane activation in container terminals in response to recent changes in maritime logistics, such as the arrival of mega-ships and automation. It highlights gaps in the existing literature and offers an in-depth analysis of current challenges. The document is divided into three chapters:The first chapter explores the history of containerization, types of containers, and challenges in operational planning. It focuses on the berth allocation problem (BAP), its resolution methods, and the integration of artificial intelligence (AI) to optimize logistical processes. The second chapter introduces the dynamic allocation problem with ship-to-ship transshipment. It proposes a mixed-integer linear program (MILP) to optimize the berthing schedule and transshipment between vessels. The objective is to reduce vessel stay times in the terminal, as well as penalties due to vessel delays, and to determine the necessary transshipment method. The method combines a packing-type heuristic and an improved genetic algorithm, demonstrating effectiveness in reducing vessel stay times. We conducted a statistical analysis to identify effective control parameters for the GA, then applied this algorithm with the determined control parameters to perform numerical experiments on randomly generated instances. Additionally, we conducted a comparative study to evaluate different crossover operators using ANOVA. We then presented a series of examples based on random data, solved using the CPLEX solver, to confirm the validity of the proposed model. The proposed method is capable of solving the problem in an acceptable computation time for medium and large instances. The final chapter presents an integrated berth and crane allocation problem, focusing on ship-to-ship transshipment. Three approaches are proposed. The first approach uses the NSGA-III genetic algorithm, supplemented by a statistical analysis to optimize parameters and evaluate different crossover operators. By analyzing AIS database data, numerical tests demonstrate the effectiveness of this method at the port of Le Havre, yielding satisfactory results within a reasonable computation time. The second approach involves two regression models, Gradient Boosting Regression (GBR) and Random Forest Regression (RFR), trained on selected features. The methodology includes preprocessing steps and hyperparameter optimization. While NSGA-III achieves the highest accuracy, it requires a longer execution time. In contrast, although GBR and RFR are slightly less precise, they significantly improve efficiency, highlighting the trade-off between accuracy and execution time in practical applications
Capitoli di libri sul tema "Nsga-Iii"
Khettabi, Imen, Lyes Benyoucef e Mohamed Amine Boutiche. "Multi-objective Sustainable Process Plan Generation for RMS: NSGA-III vs New NSGA-III". In Modelling, Computation and Optimization in Information Systems and Management Sciences, 170–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92666-3_15.
Testo completoBlank, Julian, Kalyanmoy Deb e Proteek Chandan Roy. "Investigating the Normalization Procedure of NSGA-III". In Lecture Notes in Computer Science, 229–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12598-1_19.
Testo completoHaider, Christian, e Gabriel Kronberger. "Shape-Constrained Symbolic Regression with NSGA-III". In Computer Aided Systems Theory – EUROCAST 2022, 164–72. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-25312-6_19.
Testo completoSantoshkumar, Balija, Kalyanmoy Deb e Lei Chen. "Eliminating Non-dominated Sorting from NSGA-III". In Lecture Notes in Computer Science, 71–85. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27250-9_6.
Testo completoGhosh, Tamal, e Kristian Martinsen. "NSGA III for CNC End Milling Process Optimization". In Communications in Computer and Information Science, 185–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4301-2_16.
Testo completoBekhit, Mahmoud, Ahmed Fathalla, Esraa Eldesouky e Ahmad Salah. "Multi-objective VNF Placement Optimization with NSGA-III". In Proceedings of the 2023 International Conference on Advances in Computing Research (ACR’23), 481–93. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33743-7_39.
Testo completodos Santos, Francisco, Lino A. Costa e Leonilde Varela. "Performance Comparison of NSGA-II and NSGA-III on Bi-objective Job Shop Scheduling Problems". In Communications in Computer and Information Science, 531–43. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53025-8_36.
Testo completoMakkar, Priyanka, Sunil Sikka e Anshu Malhotra. "Empirical Evaluation of NSGA II, NSGA III, and MOEA/D Optimization Algorithms on Multi-objective Target". In Advances in Intelligent Systems and Computing, 23–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1740-9_3.
Testo completoGonçalves, Richard A., Lucas M. Pavelski, Carolina P. de Almeida, Josiel N. Kuk, Sandra M. Venske e Myriam R. Delgado. "Adaptive Operator Selection for Many-Objective Optimization with NSGA-III". In Lecture Notes in Computer Science, 267–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54157-0_19.
Testo completoDing, Rui, Hongbin Dong, Jun He, Xianbin Feng, Xiaodong Yu e Lijie Li. "U-NSGA-III: An Improved Evolutionary Many-Objective Optimization Algorithm". In Communications in Computer and Information Science, 24–35. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2826-8_3.
Testo completoAtti di convegni sul tema "Nsga-Iii"
Haddad, Anouar, Takwa Tlili, Issam Nouaouri e Saoussen Krichen. "Solving the multi-objective ambulance routing problem using NSGA III". In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), 2296–300. IEEE, 2024. http://dx.doi.org/10.1109/codit62066.2024.10708304.
Testo completoChu, Wang, Liu Zhongze, Cao Shunxiang, Hu Kai, Zhang Yibo, Xiang Dong e Zhou Weiye. "An Improved RRT* Algorithm for Multi-Objective Optimization Based on NSGA-III". In 2024 8th International Conference on Robotics and Automation Sciences (ICRAS), 55–65. IEEE, 2024. http://dx.doi.org/10.1109/icras62427.2024.10654473.
Testo completoAgarwal, Aakansha, e Satyasai Jagannath Nanda. "Dynamic NSGA-III with KRR-ANOVA Kernel Predictor for In-Motion Sonar Image Segmentation". In 2024 IEEE Congress on Evolutionary Computation (CEC), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/cec60901.2024.10612074.
Testo completoPoor, Masoud Kermani, Shahryar Rahnamayan, Azam Asilian Bidgoli e Mehran Ebrahimi. "Exploring Long-term Memory in Evolutionary Multi-objective Algorithms: A Case Study with NSGA-III". In 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 864–70. IEEE, 2024. http://dx.doi.org/10.1109/ccece59415.2024.10667327.
Testo completoSampaio, Sávio Menezes, Altino Dantas e Celso G. Camilo-Junior. "IVF/NSGA-III - In Vitro Fertilization Method Coupled to NSGA-III". In 2023 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2023. http://dx.doi.org/10.1109/cec53210.2023.10254062.
Testo completoWangsom, Peerasak, Pascal Bouvry e Kittichai Lavangnananda. "Extreme Solutions NSGA-III (E-NSGA-III) for Scientific Workflow Scheduling on Cloud". In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2018. http://dx.doi.org/10.1109/icmla.2018.00184.
Testo completoGoncalves, Richard A., Carolina P. Almeida, Lucas M. Pavelski, Sandra M. Venske, Josiel N. Kuk e Aurora T. Pozo. "Adaptive Operator Selection in NSGA-III". In 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2016. http://dx.doi.org/10.1109/bracis.2016.042.
Testo completoWolschick, Lucas, Paulo Cesar Gonçalves, João Choma Neto, Willian Marques Freire, Aline Maria Malachini Miotto Amaral e Thelma Elita Colanzi. "Evaluating the performance of NSGA-II and NSGA-III on Product Line Architecture Design". In Simpósio Brasileiro de Componentes, Arquiteturas e Reutilização de Software, 11–20. Sociedade Brasileira de Computação, 2024. http://dx.doi.org/10.5753/sbcars.2024.3830.
Testo completoWietheger, Simon, e Benjamin Doerr. "A Mathematical Runtime Analysis of the Non-dominated Sorting Genetic Algorithm III (NSGA-III)". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/628.
Testo completoSilva, Rheidner, e André Britto. "NSGA-III com Adaptação dos Pontos de Referência". In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/eniac.2019.9312.
Testo completo