Segui questo link per vedere altri tipi di pubblicazioni sul tema: Nonorientable Surfaces.

Articoli di riviste sul tema "Nonorientable Surfaces"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Nonorientable Surfaces".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Bujalance, J. A., e B. Estrada. "q-hyperelliptic compact nonorientable Klein surfaces without boundary". International Journal of Mathematics and Mathematical Sciences 31, n. 4 (2002): 215–27. http://dx.doi.org/10.1155/s0161171202109173.

Testo completo
Abstract (sommario):
LetXbe a nonorientable Klein surface (KS in short), that is a compact nonorientable surface with a dianalytic structure defined on it. A Klein surfaceXis said to beq-hyperellipticif and only if there exists an involutionΦonX(a dianalytic homeomorphism of order two) such that the quotientX/〈Φ〉has algebraic genusq.q-hyperelliptic nonorientable KSs without boundary (nonorientable Riemann surfaces) were characterized by means of non-Euclidean crystallographic groups. In this paper, using that characterization, we determine bounds for the order of the automorphism group of a nonorientableq-hyperelliptic Klein surfaceXsuch thatX/〈Φ〉has no boundary and prove that the bounds are attained. Besides, we obtain the dimension of the Teichmüller space associated to this type of surfaces.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

NAKAZAWA, NAOHITO. "ON FIELD THEORIES OF LOOPS". Modern Physics Letters A 10, n. 29 (21 settembre 1995): 2175–84. http://dx.doi.org/10.1142/s0217732395002337.

Testo completo
Abstract (sommario):
We apply stochastic quantization method to real symmetric matrix models for the second quantization of nonorientable loops in both discretized and continuum levels. The stochastic process defined by the Langevin equation in loop space describes the time evolution of the nonorientable loops defined on nonorientable 2-D surfaces. The corresponding Fokker-Planck Hamiltonian deduces a nonorientable string field theory at the continuum limit.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Danthony, Claude, e Arnaldo Nogueira. "Measured foliations on nonorientable surfaces". Annales scientifiques de l'École normale supérieure 23, n. 3 (1990): 469–94. http://dx.doi.org/10.24033/asens.1608.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Stukow, Michał. "Dehn twists on nonorientable surfaces". Fundamenta Mathematicae 189, n. 2 (2006): 117–47. http://dx.doi.org/10.4064/fm189-2-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Hartsfield, Nora, e Gerhard Ringel. "Minimal quadrangulations of nonorientable surfaces". Journal of Combinatorial Theory, Series A 50, n. 2 (marzo 1989): 186–95. http://dx.doi.org/10.1016/0097-3165(89)90014-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

YURTTAŞ, Saadet Öykü, e Mehmetcik PAMUK. "Integral laminations on nonorientable surfaces". TURKISH JOURNAL OF MATHEMATICS 42 (2018): 69–82. http://dx.doi.org/10.3906/mat-1608-76.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Levine, Adam, Daniel Ruberman e Sašo Strle. "Nonorientable surfaces in homology cobordisms". Geometry & Topology 19, n. 1 (27 febbraio 2015): 439–94. http://dx.doi.org/10.2140/gt.2015.19.439.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Barza, Ilie, e Dorin Ghisa. "Vector fields on nonorientable surfaces". International Journal of Mathematics and Mathematical Sciences 2003, n. 3 (2003): 133–52. http://dx.doi.org/10.1155/s0161171203204038.

Testo completo
Abstract (sommario):
A one-to-one correspondence is established between the germs of functions and tangent vectors on a NOSXand the bi-germs of functions, respectively, elementary fields of tangent vectors (EFTV) on the orientable double cover ofX. Some representation theorems for the algebra of germs of functions, the tangent space at an arbitrary point ofX, and the space of vector fields onXare proved by using a symmetrisation process. An example related to the normal derivative on the border of the Möbius strip supports the nontriviality of the concepts introduced in this paper.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Friesen, Tyler, e Vassily Olegovich Manturov. "Checkerboard embeddings of *-graphs into nonorientable surfaces". Journal of Knot Theory and Its Ramifications 23, n. 07 (giugno 2014): 1460004. http://dx.doi.org/10.1142/s0218216514600049.

Testo completo
Abstract (sommario):
This paper considers *-graphs in which all vertices have degree 4 or 6, and studies the question of calculating the genus of nonorientable surfaces into which such graphs may be embedded. In a previous paper [Embeddings of *-graphs into 2-surfaces, preprint (2012), arXiv:1212.5646] by the authors, the problem of calculating whether a given *-graph in which all vertices have degree 4 or 6 admits a ℤ2-homologically trivial embedding into a given orientable surface was shown to be equivalent to a problem on matrices. Here we extend those results to nonorientable surfaces. The embeddability condition that we obtain yields quadratic-time algorithms to determine whether a *-graph with all vertices of degree 4 or 6 admits a ℤ2-homologically trivial embedding into the projective plane or into the Klein bottle.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

L�pez, Francisco J., e Francisco Mart�n. "Complete nonorientable minimal surfaces and symmetries". Duke Mathematical Journal 79, n. 3 (settembre 1995): 667–86. http://dx.doi.org/10.1215/s0012-7094-95-07917-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Lu, Wentao T., e F. Y. Wu. "Close-packed dimers on nonorientable surfaces". Physics Letters A 293, n. 5-6 (febbraio 2002): 235–46. http://dx.doi.org/10.1016/s0375-9601(02)00019-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Ross, Marty. "Complete nonorientable minimal surfaces in R3". Commentarii Mathematici Helvetici 67, n. 1 (dicembre 1992): 64–76. http://dx.doi.org/10.1007/bf02566489.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Archdeacon, Dan, e Phil Huneke. "A Kuratowski theorem for nonorientable surfaces". Journal of Combinatorial Theory, Series B 46, n. 2 (aprile 1989): 173–231. http://dx.doi.org/10.1016/0095-8956(89)90043-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Ho, Nan-Kuo, e Chiu-Chu Melissa Liu. "Yang-Mills connections on nonorientable surfaces". Communications in Analysis and Geometry 16, n. 3 (2008): 617–79. http://dx.doi.org/10.4310/cag.2008.v16.n3.a6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Atalan, F., e E. Medetogullari. "The Birman-Hilden property of covering spaces of nonorientable surfaces". Ukrains’kyi Matematychnyi Zhurnal 72, n. 3 (28 marzo 2020): 307–15. http://dx.doi.org/10.37863/umzh.v72i3.6044.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Parlak, Anna, e Michał Stukow. "Roots of Dehn twists on nonorientable surfaces". Journal of Knot Theory and Its Ramifications 28, n. 12 (ottobre 2019): 1950077. http://dx.doi.org/10.1142/s0218216519500779.

Testo completo
Abstract (sommario):
Margalit and Schleimer observed that Dehn twists on orientable surfaces have nontrivial roots. We investigate the problem of roots of a Dehn twist [Formula: see text] about a nonseparating circle [Formula: see text] in the mapping class group [Formula: see text] of a nonorientable surface [Formula: see text] of genus [Formula: see text]. We explore the existence of roots and, following the work of McCullough, Rajeevsarathy and Monden, give a simple arithmetic description of their conjugacy classes. We also study roots of maximal degree and prove that if we fix an odd integer [Formula: see text], then for each sufficiently large [Formula: see text], [Formula: see text] has a root of degree [Formula: see text] in [Formula: see text]. Moreover, for any possible degree [Formula: see text], we provide explicit expressions for a particular type of roots of Dehn twists about nonseparating circles in [Formula: see text].
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Atalan, Ferihe, e Mustafa Korkmaz. "Automorphisms of curve complexes on nonorientable surfaces". Groups, Geometry, and Dynamics 8, n. 1 (2014): 39–68. http://dx.doi.org/10.4171/ggd/216.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Dai, Bo, Chung-I. Ho e Tian-Jun Li. "Nonorientable Lagrangian surfaces in rational 4–manifolds". Algebraic & Geometric Topology 19, n. 6 (20 ottobre 2019): 2837–54. http://dx.doi.org/10.2140/agt.2019.19.2837.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Ginés Espín Buendía, José, Daniel Peralta-salas e Gabriel Soler López. "Existence of minimal flows on nonorientable surfaces". Discrete & Continuous Dynamical Systems - A 37, n. 8 (2017): 4191–211. http://dx.doi.org/10.3934/dcds.2017178.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Ishihara, Toru. "Complete Nonorientable Minimal Surfaces in R 3". Transactions of the American Mathematical Society 333, n. 2 (ottobre 1992): 889. http://dx.doi.org/10.2307/2154069.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Bujalance, J. A. "Hyperelliptic compact nonorientable Klein surfaces without boundary". Kodai Mathematical Journal 12, n. 1 (1989): 1–8. http://dx.doi.org/10.2996/kmj/1138038984.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Machon, T., e G. P. Alexander. "Knots and nonorientable surfaces in chiral nematics". Proceedings of the National Academy of Sciences 110, n. 35 (12 agosto 2013): 14174–79. http://dx.doi.org/10.1073/pnas.1308225110.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Karimipour, V., e A. Mostafazadeh. "Lattice topological field theory on nonorientable surfaces". Journal of Mathematical Physics 38, n. 1 (gennaio 1997): 49–66. http://dx.doi.org/10.1063/1.531830.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

de Oliveira, M. Elisa G. G. "Some new examples of nonorientable minimal surfaces". Proceedings of the American Mathematical Society 98, n. 4 (1 aprile 1986): 629. http://dx.doi.org/10.1090/s0002-9939-1986-0861765-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Gabai, David, e William H. Kazez. "The classification of maps of nonorientable surfaces". Mathematische Annalen 281, n. 4 (dicembre 1988): 687–702. http://dx.doi.org/10.1007/bf01456845.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

ATALAN, FERIHE. "OUTER AUTOMORPHISMS OF MAPPING CLASS GROUPS OF NONORIENTABLE SURFACES". International Journal of Algebra and Computation 20, n. 03 (maggio 2010): 437–56. http://dx.doi.org/10.1142/s0218196710005716.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

OZAWA, MAKOTO. "ESSENTIAL STATE SURFACES FOR KNOTS AND LINKS". Journal of the Australian Mathematical Society 91, n. 3 (dicembre 2011): 391–404. http://dx.doi.org/10.1017/s1446788712000055.

Testo completo
Abstract (sommario):
AbstractWe study a canonical spanning surface obtained from a knot or link diagram, depending on a given Kauffman state. We give a sufficient condition for the surface to be essential. By using the essential surface, we can deduce the triviality and splittability of a knot or link from its diagrams. This has been done on the extended knot or link class that includes all semiadequate, homogeneous knots and links, and most algebraic knots and links. In order to prove the main theorem, we extend Gabai’s Murasugi sum theorem to the case of nonorientable spanning surfaces.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Gromadzki, Grzegorz. "Supersoluble Groups of Automorphisms of Nonorientable Riemann Surfaces". Bulletin of the London Mathematical Society 22, n. 6 (novembre 1990): 561–68. http://dx.doi.org/10.1112/blms/22.6.561.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Solov’eva, F. I. "Tilings of nonorientable surfaces by Steiner triple systems". Problems of Information Transmission 43, n. 3 (settembre 2007): 213–24. http://dx.doi.org/10.1134/s0032946007030040.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Li, Youlin, e Burak Ozbagci. "Fillings of unit cotangent bundles of nonorientable surfaces". Bulletin of the London Mathematical Society 50, n. 1 (26 ottobre 2017): 7–16. http://dx.doi.org/10.1112/blms.12104.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Lu, Wentao T., e F. Y. Wu. "Erratum to: “Close-packed dimers on nonorientable surfaces”". Physics Letters A 298, n. 4 (giugno 2002): 293. http://dx.doi.org/10.1016/s0375-9601(02)00518-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Tzeng, W. J., e F. Y. Wu. "Spanning trees on hypercubic lattices and nonorientable surfaces". Applied Mathematics Letters 13, n. 7 (ottobre 2000): 19–25. http://dx.doi.org/10.1016/s0893-9659(00)00071-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Bernatzki, Felicia. "The Plateau-Douglas problem for nonorientable minimal surfaces". manuscripta mathematica 79, n. 1 (dicembre 1993): 73–80. http://dx.doi.org/10.1007/bf02568329.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Ho, Nan-Kuo, e Chiu-Chu Liu. "Yang-Mills connections on orientable and nonorientable surfaces". Memoirs of the American Mathematical Society 202, n. 948 (2009): 0. http://dx.doi.org/10.1090/s0065-9266-09-00564-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Meeks, III, William H. "Regularity of the Albanese map for nonorientable surfaces". Journal of Differential Geometry 29, n. 2 (1989): 345–52. http://dx.doi.org/10.4310/jdg/1214442878.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Ho, Nan-Kuo, Chiu-Chu Melissa Liu e Daniel Ramras. "Orientability in Yang–Mills theory over nonorientable surfaces". Communications in Analysis and Geometry 17, n. 5 (2009): 903–53. http://dx.doi.org/10.4310/cag.2009.v17.n5.a3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Alarcón, Antonio, e Francisco J. López. "Approximation theory for nonorientable minimal surfaces and applications". Geometry & Topology 19, n. 2 (10 aprile 2015): 1015–62. http://dx.doi.org/10.2140/gt.2015.19.1015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Aranson, S. Kh, E. V. Zhuzhoma e I. A. Tel'nykh. "Transitive and supertransitive flows on closed nonorientable surfaces". Mathematical Notes 63, n. 4 (aprile 1998): 549–52. http://dx.doi.org/10.1007/bf02311259.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Nicholls, Sarah Ruth, Nancy Scherich e Julia Shneidman. "Large 1-systems of curves in nonorientable surfaces". Involve, a Journal of Mathematics 16, n. 1 (14 aprile 2023): 127–39. http://dx.doi.org/10.2140/involve.2023.16.127.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

ALI, FATEMA, e FERIHE ATALAN. "CONNECTEDNESS OF THE CUT SYSTEM COMPLEX ON NONORIENTABLE SURFACES". Kragujevac Journal of Mathematics 46, n. 1 (febbraio 2022): 21–28. http://dx.doi.org/10.46793/kgjmat2201.021a.

Testo completo
Abstract (sommario):
Let N be a compact, connected, nonorientable surface of genus g with n boundary components. In this note, we show that the cut system complex of N is connected for g < 4 and disconnected for g ≥ 4. We then define a related complex and show that it is connected for g ≥ 4.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Eudave-Muñoz, Mario, e José Frías. "The Neuwirth Conjecture for a family of satellite knots". Journal of Knot Theory and Its Ramifications 28, n. 02 (febbraio 2019): 1950017. http://dx.doi.org/10.1142/s0218216519500172.

Testo completo
Abstract (sommario):
Let [Formula: see text] be a nontrivial knot in [Formula: see text]. It was conjectured that there exists a Neuwirth surface for [Formula: see text]. That is, a closed surface in [Formula: see text] containing the knot [Formula: see text] as a nonseparating curve and such that every compressing disk for the surface intersects the knot in at least two points. We provide explicit constructions of Neuwirth surfaces for a family of satellite knots, which do not depend on the existence of nonorientable algebraically incompressible and [Formula: see text]-incompressible spanning surfaces for these knots.
Gli stili APA, Harvard, Vancouver, ISO e altri
42

KORKMAZ, MUSTAFA. "First homology group of mapping class groups of nonorientable surfaces". Mathematical Proceedings of the Cambridge Philosophical Society 123, n. 3 (maggio 1998): 487–99. http://dx.doi.org/10.1017/s0305004197002454.

Testo completo
Abstract (sommario):
Recall that the first homology group H1(G) of a group G is the derived quotient G/[G, G]. The first homology groups of the mapping class groups of closed orientable surfaces are well known. Let F be a closed orientable surface of genus g. Recall that the extended mapping class group [Mscr ]*F of the surface F is the group of the isotopy classes of self-homeomorphisms of F. The mapping class group [Mscr ]F of F is the subgroup of [Mscr ]*F consisting of the isotopy classes of orientation-preserving self-homeomorphisms of F. It is well known that [Mscr ]F is trivial if F is a sphere. Hence the first homology group of the mapping class group of a sphere is trivial. If the genus of F is at least three, then H1([Mscr ]F) is again trivial. This result is due to Powell [P]. The group H1([Mscr ]F) is Z10 if the genus of F is two, proved by Mumford [Mu], and Z12 if F is a torus. When a problem about orientable surfaces is solved, it is natural to ask the corresponding problem for nonorientable surfaces. This is our motivation for the present paper.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Petrenjuk, V. I., e D. A. Petrenjuk. "About Structure of Graph Obstructions for Klein Surface with 9 Vertices". Cybernetics and Computer Technologies, n. 4 (31 dicembre 2020): 65–86. http://dx.doi.org/10.34229/2707-451x.20.4.5.

Testo completo
Abstract (sommario):
The structure of the 9 vertex obstructive graphs for the nonorientable surface of the genus 2 is established by the method of j-transformations of the graphs. The problem of establishing the structural properties of 9 vertex obstruction graphs for the surface of the undirected genus 2 by the method of j-transformation of graphs is considered. The article has an introduction and 5 sections. The introduction contains the main definitions, which are illustrated, to some extent, in Section 1, which provides several statements about their properties. Sections 2 – 4 investigate the structural properties of 9 vertex obstruction graphs for an undirected surface by presenting as a j-image of several graphs homeomorphic to one of the Kuratovsky graphs and at least one planar or projective-planar graph. Section 5 contains a new version of the proof of the statement about the peculiarities of the minimal embeddings of finite graphs in nonorientable surfaces, namely, that, in contrast to oriented surfaces, cell boundaries do not contain repeated edges. Also in section 5 the other properties peculiar to embeddings of graphs to non-oriented surfaces and the main result are given. The main result is Theorem 1. Each obstruction graph H for a non-oriented surface N2 of genus 2 satisfies the following. 1. An arbitrary edge u,u = (a,b) is placed on the Mebius strip by some minimal embedding of the graph H in N3 and there exists a locally projective-planar subgraph K of the graph H \ u which satisfies the condition: (tK({a,b},N3)=1)˄(tK\u({a,b},N2)=2), where tK({a,b},N) is the number of reachability of the set {a,b} on the nonorientable surface N; 2. There exists the smallest inclusion of many different subgraphs Ki of a 2-connected graph H homeomorphic to the graph K+e, where K is a locally planar subgraph of the graph H (at least K+e is homemorphic to K5 or K3,3), which covers the set of edges of the graph H. Keywords: graph, Klein surface, graph structure, graph obstruction, non-oriented surface, Möbius strip.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Ho, Nan-Kuo, e Chiu-Chu Melissa Liu. "On the Connectedness of Moduli Spaces of Flat Connections over Compact Surfaces". Canadian Journal of Mathematics 56, n. 6 (1 dicembre 2004): 1228–36. http://dx.doi.org/10.4153/cjm-2004-053-3.

Testo completo
Abstract (sommario):
AbstractWe study the connectedness of the moduli space of gauge equivalence classes of flat G-connections on a compact orientable surface or a compact nonorientable surface for a class of compact connected Lie groups. This class includes all the compact, connected, simply connected Lie groups, and some non-semisimple classical groups.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Khorrami, M., e M. Alimohammadi. "Observables of the Generalized 2D Yang–Mills Theories on Arbitrary Surfaces: A Path Integral Approach". Modern Physics Letters A 12, n. 30 (28 settembre 1997): 2265–70. http://dx.doi.org/10.1142/s0217732397002338.

Testo completo
Abstract (sommario):
Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) of the generalized 2-D Yang–Mills theories in the Schwinger–Fock gauge. Our calculation is done for arbitrary 2-D orientable, and also nonorientable surfaces.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Gromadzki, G. "On soluble groups of automorphisms of nonorientable Klein surfaces". Fundamenta Mathematicae 141, n. 3 (1992): 215–27. http://dx.doi.org/10.4064/fm-141-3-215-227.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Ishihara, Tōru. "Harmonic maps of nonorientable surfaces to four-dimensional manifolds". Tohoku Mathematical Journal 45, n. 1 (1993): 1–12. http://dx.doi.org/10.2748/tmj/1178225951.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Fujimori, Shoichi, e Francisco J. López. "Nonorientable maximal surfaces in the Lorentz-Minkowski 3-space". Tohoku Mathematical Journal 62, n. 3 (2010): 311–28. http://dx.doi.org/10.2748/tmj/1287148614.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Davies, James, e Florian Pfender. "Edge‐maximal graphs on orientable and some nonorientable surfaces". Journal of Graph Theory 98, n. 3 (6 luglio 2021): 405–25. http://dx.doi.org/10.1002/jgt.22705.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Martín, Francisco, e Francisco J. Lopez. "Complete nonorientable minimal surfaces with the highest symmetry group". American Journal of Mathematics 119, n. 1 (1997): 55–81. http://dx.doi.org/10.1353/ajm.1997.0004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia