Letteratura scientifica selezionata sul tema "Noncommutative rings"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Noncommutative rings".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Noncommutative rings"

1

Buckley, S., e D. MacHale. "Noncommutative Anticommutative Rings". Irish Mathematical Society Bulletin 0018 (1987): 55–57. http://dx.doi.org/10.33232/bims.0018.55.57.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Cohn, P. M. "NONCOMMUTATIVE NOETHERIAN RINGS". Bulletin of the London Mathematical Society 20, n. 6 (novembre 1988): 627–29. http://dx.doi.org/10.1112/blms/20.6.627.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

KAUCIKAS, ALGIRDAS, e ROBERT WISBAUER. "NONCOMMUTATIVE HILBERT RINGS". Journal of Algebra and Its Applications 03, n. 04 (dicembre 2004): 437–43. http://dx.doi.org/10.1142/s0219498804000964.

Testo completo
Abstract (sommario):
Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ideal [Formula: see text] contracts to a maximal ideal of R. This definition is also equivalent to [Formula: see text] being finitely generated as an [Formula: see text]-module, i.e., a liberal extension. This gives a natural form of a noncommutative Hilbert's Nullstellensatz. The class of Hilbert rings is closed under finite polynomial extensions and under integral extensions.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Alajbegovic̀, Jusuf H., e Nikolai I. Dubrovin. "Noncommutative prüfer rings". Journal of Algebra 135, n. 1 (novembre 1990): 165–76. http://dx.doi.org/10.1016/0021-8693(90)90155-h.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Dubrovin, N. I. "NONCOMMUTATIVE PRÜFER RINGS". Mathematics of the USSR-Sbornik 74, n. 1 (28 febbraio 1993): 1–8. http://dx.doi.org/10.1070/sm1993v074n01abeh003330.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wang, Jian, Yunxia Li e Jiangsheng Hu. "Noncommutative G-semihereditary rings". Journal of Algebra and Its Applications 17, n. 01 (gennaio 2018): 1850014. http://dx.doi.org/10.1142/s0219498818500147.

Testo completo
Abstract (sommario):
In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Ghorbani, A., e M. Naji Esfahani. "On noncommutative FGC rings". Journal of Algebra and Its Applications 14, n. 07 (24 aprile 2015): 1550109. http://dx.doi.org/10.1142/s0219498815501091.

Testo completo
Abstract (sommario):
Many studies have been conducted to characterize commutative rings whose finitely generated modules are direct sums of cyclic modules (called FGC rings), however, the characterization of noncommutative FGC rings is still an open problem, even for duo rings. We study FGC rings in some special cases, it is shown that a local Noetherian ring R is FGC if and only if R is a principal ideal ring if and only if R is a uniserial ring, and if these assertions hold R is a duo ring. We characterize Noetherian duo FGC rings. In fact, it is shown that a duo ring R is a Noetherian left FGC ring if and only if R is a Noetherian right FGC ring, if and only if R is a principal ideal ring.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

MacKenzie, Kenneth W. "Polycyclic group rings and unique factorisation rings". Glasgow Mathematical Journal 36, n. 2 (maggio 1994): 135–44. http://dx.doi.org/10.1017/s0017089500030676.

Testo completo
Abstract (sommario):
The theory of unique factorisation in commutative rings has recently been extended to noncommutative Noetherian rings in several ways. Recall that an element x of a ring R is said to be normalif xR = Rx. We will say that an element p of a ring R is (completely) prime if p is a nonzero normal element of R and pR is a (completely) prime ideal. In [2], a Noetherian unique factorisation domain (or Noetherian UFD) is defined to be a Noetherian domain in which every nonzero prime ideal contains a completely prime element: this concept is generalised in [4], where a Noetherian unique factorisation ring(or Noetherian UFR) is defined as a prime Noetherian ring in which every nonzero prime ideal contains a nonzero prime element; note that it follows from the noncommutative version of the Principal Ideal Theorem that in a Noetherian UFR, if pis a prime element then the height of the prime ideal pR must be equal to 1. Surprisingly many classes of noncommutative Noetherian rings are known to be UFDs or UFRs: see [2] and [4] for details. This theory has recently been extended still further, to cover certain classes of non-Noetherian rings: see [3].
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Zabavskii, B. V. "Noncommutative elementary divisor rings". Ukrainian Mathematical Journal 39, n. 4 (1988): 349–53. http://dx.doi.org/10.1007/bf01060766.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Gatalevich, A. I., e B. V. Zabavs'kii. "Noncommutative elementary divisor rings". Journal of Mathematical Sciences 96, n. 2 (agosto 1999): 3013–16. http://dx.doi.org/10.1007/bf02169697.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Noncommutative rings"

1

Zhang, Yufei. "Orderings on noncommutative rings". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0013/NQ32804.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Pandian, Ravi Samuel. "The structure of semisimple Artinian rings". CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/2977.

Testo completo
Abstract (sommario):
Proves two famous theorems attributed to J.H.M. Wedderburn, which concern the structure of noncommutative rings. The two theorems include, (1) how any semisimple Artinian ring is the direct sum of a finite number of simple rings; and, (2) the Wedderburn-Artin Theorem. Proofs in this paper follow those outlined in I.N. Herstein's monograph Noncommutative Rings with examples and details provided by the author.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Nordstrom, Hans Erik. "Associated primes over Ore extensions and generalized Weyl algebras /". view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3181118.

Testo completo
Abstract (sommario):
Thesis (Ph. D.)--University of Oregon, 2005.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 48-49). Also available for download via the World Wide Web; free to University of Oregon users.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Rennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Leroux, Christine M. "On universal localization of noncommutative Noetherian rings". Thesis, Northern Illinois University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3567765.

Testo completo
Abstract (sommario):

The concepts of middle annihilators and links between prime ideals have been useful in studying classical localization. Universal localization has given us an alternative to classical localization as an approach to studying the localization of noncommutative Noetherian rings at prime and semiprime ideals. There are two main ideas we explore in this thesis. The first idea is the relationship between certain middle annihilator ideals, links between prime ideals, and universal localization. The second idea is to explore the circumstances under which the universal localization of a ring will be Noetherian, in the case where the ring is finitely generated as a module over its center.

Gli stili APA, Harvard, Vancouver, ISO e altri
6

Collier, Nicholas Richard. "On asymptotic stability of prime ideals in noncommutative rings". Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403145.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Brandl, Mary-Katherine. "Primitive and Poisson spectra of non-semisimple twists of polynomial algebras /". view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3024507.

Testo completo
Abstract (sommario):
Thesis (Ph. D.)--University of Oregon, 2001.
Typescript. Includes vita and abstract. Includes bibliographical references (leaf 49). Also available for download via the World Wide Web; free to University of Oregon users.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Low, Gordan MacLaren. "Injective modules and representational repleteness". Thesis, University of Glasgow, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319776.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Brazfield, Christopher Jude. "Artin-Schelter regular algebras of global dimension 4 with two degree one generators /". view abstract or download file of text, 1999. http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.

Testo completo
Abstract (sommario):
Thesis (Ph. D.)--University of Oregon, 1999.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 103-105). Also available for download via the World Wide Web; free to University of Oregon users. Address: http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Rogozinnikov, Evgenii [Verfasser], e Anna [Akademischer Betreuer] Wienhard. "Symplectic groups over noncommutative rings and maximal representations / Evgenii Rogozinnikov ; Betreuer: Anna Wienhard". Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1215758219/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Noncommutative rings"

1

Montgomery, Susan, e Lance Small, a cura di. Noncommutative Rings. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9736-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Susan, Montgomery, Small Lance W. 1941-, Mathematical Sciences Research Institute (Berkeley, Calif.) e Microprogram on Noncommutative Rings (1989 : Mathematical Sciences Research Institute), a cura di. Noncommutative rings. New York: Springer-Verlag, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

McConnell, J. C. Noncommutative Noetherian rings. Chichester [West Sussex]: Wiley, 1988.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

McConnell, J. C. Noncommutative Noetherian rings. Providence, R.I: American Mathematical Society, 2001.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

McConnell, J. C. Noncommutative Noetherian rings. Chichester: Wiley, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Lam, T. Y. A first course in noncommutative rings. 2a ed. New York: Springer, 2001.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Goodearl, K. R. An introduction to noncommutative Noetherian rings. 2a ed. Cambridge, U.K: Cambridge University Press, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Goodearl, K. R. An introduction to noncommutative noetherian rings. 2a ed. Cambridge, U.K: Cambridge Univeristy Press, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Dougherty, Steven, Alberto Facchini, André Leroy, Edmund Puczyłowski e Patrick Solé, a cura di. Noncommutative Rings and Their Applications. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/conm/634.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Connes, Alain. Noncommutative geometry. San Diego: Academic Press, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Noncommutative rings"

1

Shafarevich, Igor R. "Noncommutative Rings". In Encyclopaedia of Mathematical Sciences, 61–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bokhut’, L. A., I. V. L’vov e V. K. Kharchenko. "Noncommutative Rings". In Encyclopaedia of Mathematical Sciences, 1–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-72899-0_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Brungs, H. H. "Noncommutative Valuation Rings". In Perspectives in Ring Theory, 105–15. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Warfield, R. B. "Noncommutative localized rings". In Lecture Notes in Mathematics, 178–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0099512.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Knapp, Anthony W. "Modules over Noncommutative Rings". In Basic Algebra, 553–91. Boston, MA: Birkhäuser Boston, 2006. http://dx.doi.org/10.1007/978-0-8176-4529-8_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Shafarevich, Igor R. "Modules over Noncommutative Rings". In Encyclopaedia of Mathematical Sciences, 74–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Keeler, Dennis S. "The Rings of Noncommutative Projective Geometry". In Advances in Algebra and Geometry, 195–207. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-12-5_17.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Akalan, Evrim, e Hidetoshi Marubayashi. "Multiplicative Ideal Theory in Noncommutative Rings". In Springer Proceedings in Mathematics & Statistics, 1–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38855-7_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Facchini, Alberto. "Commutative Monoids, Noncommutative Rings and Modules". In New Perspectives in Algebra, Topology and Categories, 67–111. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84319-9_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ganchev, Alexander. "Fusion Rings and Tensor Categories". In Noncommutative Structures in Mathematics and Physics, 295–98. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0836-5_23.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Noncommutative rings"

1

MORI, IZURU. "NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES". In Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bergamaschi, Flaulles Boone, e Regivan H. N. Santiago. "Strongly prime fuzzy ideals over noncommutative rings". In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622346.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Elhassani, Mustapha, Aziz Boulbot, Abdelhakim Chillali e Ali Mouhib. "Fully homomorphic encryption scheme on a nonCommutative ring R". In 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). IEEE, 2019. http://dx.doi.org/10.1109/isacs48493.2019.9068892.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia