Letteratura scientifica selezionata sul tema "Non-Orientability"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Non-Orientability".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Non-Orientability"
Brown, D. R. L., e D. M. Jackson. "A rooted map invariant, non-orientability and Jack symmetric functions". Journal of Combinatorial Theory, Series B 97, n. 3 (maggio 2007): 430–52. http://dx.doi.org/10.1016/j.jctb.2006.07.007.
Testo completoRUSAKOV, B. YE. "LOOP AVERAGES AND PARTITION FUNCTIONS IN U(N) GAUGE THEORY ON TWO-DIMENSIONAL MANIFOLDS". Modern Physics Letters A 05, n. 09 (10 aprile 1990): 693–703. http://dx.doi.org/10.1142/s0217732390000780.
Testo completoAguirre, Pablo, Bernd Krauskopf e Hinke M. Osinga. "Global Invariant Manifolds Near Homoclinic Orbits to a Real Saddle: (Non)Orientability and Flip Bifurcation". SIAM Journal on Applied Dynamical Systems 12, n. 4 (gennaio 2013): 1803–46. http://dx.doi.org/10.1137/130912542.
Testo completoMAGNON, ANNE. "PT VIOLATION AND ORIENTABILITY IN THE EARLY UNIVERSE". International Journal of Modern Physics D 03, n. 01 (marzo 1994): 225–30. http://dx.doi.org/10.1142/s0218271894000344.
Testo completoSingerman, David. "Orientable and non-orientable Klein surfaces with maximal symmetry". Glasgow Mathematical Journal 26, n. 1 (gennaio 1985): 31–34. http://dx.doi.org/10.1017/s0017089500005747.
Testo completoCosta, Antonio F., e Milagros Izquierdo. "On real trigonal Riemann surfaces". MATHEMATICA SCANDINAVICA 98, n. 1 (1 marzo 2006): 53. http://dx.doi.org/10.7146/math.scand.a-14983.
Testo completoLIENHARDT, PASCAL. "N-DIMENSIONAL GENERALIZED COMBINATORIAL MAPS AND CELLULAR QUASI-MANIFOLDS". International Journal of Computational Geometry & Applications 04, n. 03 (settembre 1994): 275–324. http://dx.doi.org/10.1142/s0218195994000173.
Testo completoXu, Yun, Anja Winkler, Martin Helwig, Niels Modler, Maik Gude, Axel Dittes, Dominik Höhlich e Thomas Lampke. "Numerical Investigation of the Magnetic Alignment of Fe-Co-Coated Single Reinforcement Fibers". Journal of Physics: Conference Series 2526, n. 1 (1 giugno 2023): 012036. http://dx.doi.org/10.1088/1742-6596/2526/1/012036.
Testo completoWinkler, Anja, Niels Modler, Maik Gude, Yun Xu, Martin Helwig, Eike Dohmen, Axel Dittes, Dominik Höhlich e Thomas Lampke. "Numerical Investigation of the Orientability of Single Reinforcement Fibers in Polymer Matrices". Polymers 14, n. 3 (28 gennaio 2022): 534. http://dx.doi.org/10.3390/polym14030534.
Testo completoLemos, N. A., e M. J. Rebouças. "Inquiring electromagnetic quantum fluctuations about the orientability of space". European Physical Journal C 81, n. 7 (luglio 2021). http://dx.doi.org/10.1140/epjc/s10052-021-09426-9.
Testo completoTesi sul tema "Non-Orientability"
Ben, Dali Houcine. "b-énumération de cartes et polynômes de Jack". Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0041.
Testo completoWe are interested in connections between symmetric functions and the enumeration of maps, which are graphs drawn on surfaces, not necessarily orientable. We consider generating series of some families of maps with colored vertices, including bipartite maps and constellations. In these generating series, some properties of the combinatorial structure of the map are controlled, and each map is counted with a weight correlated to its "non-orientability". We focus on two families of conjectures connecting these series to Jack polynomials, a one parameter deformation of Schur symmetric functions. The Matching-Jack conjecture, introduced by Goulden and Jackson in 1996, suggests that the expansion of a mutliparametric Jack series in the power-sum symmetric functions has non-negative integer coefficients. Moreover, these coefficients count bipartite maps with controlled degrees of all vertices and faces. Using techniques of differential operators recently introduced by Chapuy and Dołęga, we prove the Matching-Jack conjecture for a particular specialization of the generating series. We use this result and a new connection with the Farahat-Higman algebra to prove the "integrality part" in the conjecture. In another direction, we establish a combinatorial formula for the power-sum expansion of Jack polynomials using layered maps, a family of decorated bipartite maps introduced in this thesis. We deduce this formula from a more general one that we provide for Jack characters. Actually, this result generalizes a formula conjectured by Stanley and proved by Féray in 2010 for the characters of the symmetric group. We combine this formula withan approach based on a family of operators introduced by Nazarov and Sklyanin in orderto prove a conjecture of Lassalle from 2008 about the positivity and the integrality of Jack characters in Stanley’s coordinates. Finally, we use the map expansion of Jack characters in order to prove that the generating series of bipartite maps with controlled vertex and face degrees satisfies a family of differential equations that completely characterizes it. Similar differential equations are alsoprovided for the series of constellations
Capitoli di libri sul tema "Non-Orientability"
"non-orientability, n." In Oxford English Dictionary. 3a ed. Oxford University Press, 2023. http://dx.doi.org/10.1093/oed/6289935181.
Testo completoBelot, Gordon. "Elliptic de Sitter Spacetime". In Accelerating Expansion, 64–78. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192866462.003.0005.
Testo completoEarl, Richard. "2. Making surfaces". In Topology: A Very Short Introduction, 24–47. Oxford University Press, 2019. http://dx.doi.org/10.1093/actrade/9780198832683.003.0002.
Testo completo