Letteratura scientifica selezionata sul tema "Non-identically distributed data"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Non-identically distributed data".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Non-identically distributed data"
A AlSaiary, Zakeia. "Analyzing Order Statistics of Non-Identically Distributed Shifted Exponential Variables in Numerical Data". International Journal of Science and Research (IJSR) 13, n. 11 (5 novembre 2024): 1264–70. http://dx.doi.org/10.21275/sr241116231011.
Testo completoTiurev, Konstantin, Peter-Jan H. S. Derks, Joschka Roffe, Jens Eisert e Jan-Michael Reiner. "Correcting non-independent and non-identically distributed errors with surface codes". Quantum 7 (26 settembre 2023): 1123. http://dx.doi.org/10.22331/q-2023-09-26-1123.
Testo completoZhu, Feng, Jiangshan Hao, Zhong Chen, Yanchao Zhao, Bing Chen e Xiaoyang Tan. "STAFL: Staleness-Tolerant Asynchronous Federated Learning on Non-iid Dataset". Electronics 11, n. 3 (20 gennaio 2022): 314. http://dx.doi.org/10.3390/electronics11030314.
Testo completoWu, Jikun, JiaHao Yu e YuJun Zheng. "Research on Federated Learning Algorithms in Non-Independent Identically Distributed Scenarios". Highlights in Science, Engineering and Technology 85 (13 marzo 2024): 104–12. http://dx.doi.org/10.54097/7newsv97.
Testo completoJiang, Yingrui, Xuejian Zhao, Hao Li e Yu Xue. "A Personalized Federated Learning Method Based on Knowledge Distillation and Differential Privacy". Electronics 13, n. 17 (6 settembre 2024): 3538. http://dx.doi.org/10.3390/electronics13173538.
Testo completoBabar, Muhammad, Basit Qureshi e Anis Koubaa. "Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging". PLOS ONE 19, n. 5 (15 maggio 2024): e0302539. http://dx.doi.org/10.1371/journal.pone.0302539.
Testo completoLayne, Elliot, Erika N. Dort, Richard Hamelin, Yue Li e Mathieu Blanchette. "Supervised learning on phylogenetically distributed data". Bioinformatics 36, Supplement_2 (dicembre 2020): i895—i902. http://dx.doi.org/10.1093/bioinformatics/btaa842.
Testo completoShahrivari, Farzad, e Nikola Zlatanov. "On Supervised Classification of Feature Vectors with Independent and Non-Identically Distributed Elements". Entropy 23, n. 8 (13 agosto 2021): 1045. http://dx.doi.org/10.3390/e23081045.
Testo completoLv, Yankai, Haiyan Ding, Hao Wu, Yiji Zhao e Lei Zhang. "FedRDS: Federated Learning on Non-IID Data via Regularization and Data Sharing". Applied Sciences 13, n. 23 (4 dicembre 2023): 12962. http://dx.doi.org/10.3390/app132312962.
Testo completoZhang, Xufei, e Yiqing Shen. "Non-IID federated learning with Mixed-Data Calibration". Applied and Computational Engineering 45, n. 1 (15 marzo 2024): 168–78. http://dx.doi.org/10.54254/2755-2721/45/20241048.
Testo completoTesi sul tema "Non-identically distributed data"
Dabo, Issa-Mbenard. "Applications de la théorie des matrices aléatoires en grandes dimensions et des probabilités libres en apprentissage statistique par réseaux de neurones". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0021.
Testo completoThe functioning of machine learning algorithms relies heavily on the structure of the data they are given to study. Most research work in machine learning focuses on the study of homogeneous data, often modeled by independent and identically distributed random variables. However, data encountered in practice are often heterogeneous. In this thesis, we propose to consider heterogeneous data by endowing them with a variance profile. This notion, derived from random matrix theory, allows us in particular to study data arising from mixture models. We are particularly interested in the problem of ridge regression through two models: the linear ridge model and the random feature ridge model. In this thesis, we study the performance of these two models in the high-dimensional regime, i.e., when the size of the training sample and the dimension of the data tend to infinity at comparable rates. To this end, we propose asymptotic equivalents for the training error and the test error associated with the models of interest. The derivation of these equivalents relies heavily on spectral analysis from random matrix theory, free probability theory, and traffic theory. Indeed, the performance measurement of many learning models depends on the distribution of the eigenvalues of random matrices. Moreover, these results enabled us to observe phenomena specific to the high-dimensional regime, such as the double descent phenomenon. Our theoretical study is accompanied by numerical experiments illustrating the accuracy of the asymptotic equivalents we provide
Capitoli di libri sul tema "Non-identically distributed data"
"Models with dependent and with non-identically distributed data". In Quantile Regression, 131–62. Oxford: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118752685.ch5.
Testo completoLele, S. "Resampling using estimating equations". In Estimating Functions, 295–304. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198522287.003.0022.
Testo completoTarima, Sergey, e Nancy Flournoy. "Choosing Interim Sample Sizes in Group Sequential Designs". In German Medical Data Sciences: Bringing Data to Life. IOS Press, 2021. http://dx.doi.org/10.3233/shti210043.
Testo completoZhao, Juan, Yuankai Zhang, Ruixuan Li, Yuhua Li, Haozhao Wang, Xiaoquan Yi e Zhiying Deng. "XFed: Improving Explainability in Federated Learning by Intersection Over Union Ratio Extended Client Selection". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230628.
Testo completoLuo, Zicheng, Xiaohan Li, Demu Zou e Hao Bai. "Federated Reinforcement Learning Algorithm with Fair Aggregation for Edge Caching". In Advances in Transdisciplinary Engineering. IOS Press, 2024. https://doi.org/10.3233/atde241221.
Testo completoFeng, Chao, Alberto Huertas Celdrán, Janosch Baltensperger, Enrique Tomás Martínez Beltrán, Pedro Miguel Sánchez Sánchez, Gérôme Bovet e Burkhard Stiller. "Sentinel: An Aggregation Function to Secure Decentralized Federated Learning". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240686.
Testo completoAtti di convegni sul tema "Non-identically distributed data"
Zhou, Zihao, Han Chen, Huageng Liu, Zeyu Ping e Yuanyuan Song. "Distributed radar incoherent fusion method for independent non-identically distributed fluctuating targets". In 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 1–4. IEEE, 2024. https://doi.org/10.1109/icsidp62679.2024.10868151.
Testo completoZhang, Bosong, Qian Sun, Hai Wang, Linna Zhang e Danyang Li. "Federated Learning Greedy Aggregation Optimization for Non-Independently Identically Distributed Data". In 2024 IEEE 23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2090–97. IEEE, 2024. https://doi.org/10.1109/trustcom63139.2024.00290.
Testo completoNie, Wenjing. "Research on federated model algorithm based on non-independent identically distributed data sets". In International Conference on Mechatronics and Intelligent Control (ICMIC 2024), a cura di Kun Zhang e Pascal Lorenz, 130. SPIE, 2025. https://doi.org/10.1117/12.3045715.
Testo completoTillman, Robert E. "Structure learning with independent non-identically distributed data". In the 26th Annual International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1553374.1553507.
Testo completoHu, Liang, Wei Cao, Jian Cao, Guandong Xu, Longbing Cao e Zhiping Gu. "Bayesian Heteroskedastic Choice Modeling on Non-identically Distributed Linkages". In 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.84.
Testo completoLi, Haowei, Like Luo e Haolong Wang. "Federated learning on non-independent and identically distributed data". In Third International Conference on Machine Learning and Computer Application (ICMLCA 2022), a cura di Fan Zhou e Shuhong Ba. SPIE, 2023. http://dx.doi.org/10.1117/12.2675255.
Testo completoMreish, Kinda, e Ivan I. Kholod. "Federated Learning with Non Independent and Identically Distributed Data". In 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon). IEEE, 2024. http://dx.doi.org/10.1109/elcon61730.2024.10468090.
Testo completoPan, Wentao, e Hui Zhou. "Fairness and Effectiveness in Federated Learning on Non-independent and Identically Distributed Data". In 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI). IEEE, 2023. http://dx.doi.org/10.1109/ccai57533.2023.10201271.
Testo completoShahrivari, Farzad, e Nikola Zlatanov. "An Asymptotically Optimal Algorithm For Classification of Data Vectors with Independent Non-Identically Distributed Elements". In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9518006.
Testo completoHodea, Octavian, Adriana Vlad e Octaviana Datcu. "Evaluating the sampling distance to achieve independently and identically distributed data from generalized Hénon map". In 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS). IEEE, 2011. http://dx.doi.org/10.1109/isscs.2011.5978665.
Testo completo