Letteratura scientifica selezionata sul tema "Nombres de Fibonacci"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Nombres de Fibonacci".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Nombres de Fibonacci"
FROUGNY, CHRISTIANE, e JACQUES SAKAROVITCH. "AUTOMATIC CONVERSION FROM FIBONACCI REPRESENTATION TO REPRESENTATION IN BASE φ, AND A GENERALIZATION". International Journal of Algebra and Computation 09, n. 03n04 (giugno 1999): 351–84. http://dx.doi.org/10.1142/s0218196799000230.
Testo completoBugeaud, Yann, Maurice Mignotte e Samir Siksek. "Sur les nombres de Fibonacci de la forme". Comptes Rendus Mathematique 339, n. 5 (settembre 2004): 327–30. http://dx.doi.org/10.1016/j.crma.2004.06.007.
Testo completoBelbachir, Hacène, e Assia Fettouma Tebtoub. "Les nombres de Stirling associés avec succession d'ordre 2, nombres de Fibonacci–Stirling et unimodalité". Comptes Rendus Mathematique 353, n. 9 (settembre 2015): 767–71. http://dx.doi.org/10.1016/j.crma.2015.06.008.
Testo completoRIVOAL, TANGUY. "ON THE BITS COUNTING FUNCTION OF REAL NUMBERS". Journal of the Australian Mathematical Society 85, n. 1 (agosto 2008): 95–111. http://dx.doi.org/10.1017/s1446788708000591.
Testo completoLinton, Stephen, James Propp, Tom Roby e Julian West. "Equivalence Relations of Permutations Generated by Constrained Transpositions". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AN,..., Proceedings (1 gennaio 2010). http://dx.doi.org/10.46298/dmtcs.2841.
Testo completoBattaglino, Daniela, Jean-Marc Fédou, Simone Rinaldi e Samanta Socci. "The number of $k$-parallelogram polyominoes". Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (1 gennaio 2013). http://dx.doi.org/10.46298/dmtcs.2370.
Testo completoTesi sul tema "Nombres de Fibonacci"
Plet, Sébastien. "Mesures et densités des nombres premiers dans les suites récurrentes linéaires". Caen, 2006. http://www.theses.fr/2006CAEN2069.
Testo completoWe give a general construction of probability measures on [0, 1] linked with representations of real numbers in a variable basis and with some so-called density function. This general constructions is shown to naturally associate a probability space to a profinite group and, in particular, to define a probability measure on the Galois group of an infinite Galois extension of a number field. Our probabilistic formalism is then applied on two distinct problems. First, we solve conjectures of Paul Bruckman and Peter Anderson on the rank of an integer in the Fibonacci sequence. Secondly, we compute the density of maximal prime divisors for an infinite family of third order integral linear recurring sequences
Hong, Haojie. "Grands diviseurs premiers de suites récurrentes linéaires". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0107.
Testo completoThis thesis is about lower bounds for the biggest prime divisors of linear recurrent sequences. First, we obtain a uniform and explicit version of Stewart’s seminal result about prime divisors of Lucas sequences. We show that constants in Stewart’s theorem depend only on the quadratic field corresponding to a Lucas sequence. Then we study the prime divisors of orders of elliptic curves over finite fields. Fixing an elliptic curve over Fq with q power of a prime number, the sequence #E(Fqn) happens to be a linear recurrent sequence of order 4. Let P(x) be the biggest prime dividing x. A lower bound of P(#E(Fqn)) is given by using Stewart’s argument and some more delicate discussions. Next, motivated by our previous two projects, we can show that when γ is an algebraic number of degree 2 and not a root of unity, there exists a prime ideal p of Q(γ) satisfying νp(γn − 1) ≥ 1, such that the rational prime p underlying p grows quicker than n. Finally, we consider a numerical application of Stewart’s method to Fibonacci numbers Fn. Relatively sharp bounds for P(Fn) are obtained. All of the above work relies heavily on Yu’s estimate for p-adic logarithmic forms
Libri sul tema "Nombres de Fibonacci"
Fibonacci, El Somiador De Nombres. Editorial Juventud, S.A., 2011.
Cerca il testo completoLines, Malcolm E. Dites un chiffre : Idées et problèmes mathématiques qui défient notre intelligence. Flammarion, 2002.
Cerca il testo completoCapitoli di libri sul tema "Nombres de Fibonacci"
"FIBONACCI AND ARABIC MATHEMATICS". In Arithmétique, Algèbre et Théorie des Nombres, 523–36. De Gruyter, 2023. http://dx.doi.org/10.1515/9783110784718-020.
Testo completo"FIBONACCI AND THE LATIN EXTENSION OF ARABIC MATHEMATICS". In Arithmétique, Algèbre et Théorie des Nombres, 629–46. De Gruyter, 2023. http://dx.doi.org/10.1515/9783110784718-025.
Testo completo"Fibonacci et le nombre d’or". In Rencontres au pays des maths, 173–82. EDP Sciences, 2023. http://dx.doi.org/10.1051/978-2-7598-3137-1.c029.
Testo completo