Articoli di riviste sul tema "Networks anomalies detection"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Networks anomalies detection".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Mažeika, Dalius, e Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU". Mokslas – Lietuvos ateitis 6, n. 2 (24 aprile 2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Testo completoRačys, Donatas, e Dalius Mažeika. "NETWORK TRAFFIC ANOMALIES IDENTIFICATION BASED ON CLASSIFICATION METHODS / TINKLO SRAUTO ANOMALIJŲ IDENTIFIKAVIMAS, TAIKANT KLASIFIKAVIMO METODUS". Mokslas – Lietuvos ateitis 7, n. 3 (13 luglio 2015): 340–44. http://dx.doi.org/10.3846/mla.2015.796.
Testo completoRejito, Juli, Deris Stiawan, Ahmed Alshaflut e Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack". Computer Science and Information Technologies 5, n. 2 (1 luglio 2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Testo completoRejito, Juli, Deris Stiawan, Ahmed Alshaflut e Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack". Computer Science and Information Technologies 5, n. 2 (1 luglio 2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Testo completoLiao, Xiao Ju, Yi Wang e Hai Lu. "Rule Anomalies Detection in Firewalls". Key Engineering Materials 474-476 (aprile 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Testo completoGutiérrez-Gómez, Leonardo, Alexandre Bovet e Jean-Charles Delvenne. "Multi-Scale Anomaly Detection on Attributed Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 01 (3 aprile 2020): 678–85. http://dx.doi.org/10.1609/aaai.v34i01.5409.
Testo completoRana, Samir. "Anomaly Detection in Network Traffic using Machine Learning and Deep Learning Techniques". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, n. 2 (10 settembre 2019): 1063–67. http://dx.doi.org/10.17762/turcomat.v10i2.13626.
Testo completoJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan e Wen Da Qin. "An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies". Applied Mechanics and Materials 130-134 (ottobre 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Testo completoA, Nandini. "Anomaly Detection Using CNN with I3D Feature Extraction". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n. 03 (18 marzo 2024): 1–5. http://dx.doi.org/10.55041/ijsrem29371.
Testo completoBadr, Malek, Shaha Al-Otaibi, Nazik Alturki e Tanvir Abir. "Deep Learning-Based Networks for Detecting Anomalies in Chest X-Rays". BioMed Research International 2022 (23 luglio 2022): 1–10. http://dx.doi.org/10.1155/2022/7833516.
Testo completoSozol, Md Shariar, Golam Mostafa Saki e Md Mostafizur Rahman. "Anomaly Detection in Cybersecurity with Graph-Based Approaches". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n. 008 (13 agosto 2024): 1–5. http://dx.doi.org/10.55041/ijsrem37061.
Testo completoDehbozorgi, Leila, Reza Akbari-Hasanjani e Reza Sabbaghi-Nadooshan. "Chaotic seismic signal modeling based on noise and earthquake anomaly detection". Facta universitatis - series: Electronics and Energetics 35, n. 4 (2022): 603–17. http://dx.doi.org/10.2298/fuee2204603d.
Testo completoKotenko, Igor, Igor Saenko, Oleg Lauta e Alexander Kriebel. "Anomaly and Cyber Attack Detection Technique Based on the Integration of Fractal Analysis and Machine Learning Methods". Informatics and Automation 21, n. 6 (24 novembre 2022): 1328–58. http://dx.doi.org/10.15622/ia.21.6.9.
Testo completoPEROV, ROMAN A., OLEG S. LAUTA, ALEXANDER M. KRIBEL e YURI V. FEDULOV. "A METHOD FOR DETECTING ANOMALIES IN NETWORK TRAFFIC". H&ES Research 14, n. 3 (2022): 25–31. http://dx.doi.org/10.36724/2409-5419-2022-14-3-25-31.
Testo completoBarrionuevo, Mercedes, Mariela Lopresti, Natalia Miranda e Fabiana Piccoli. "Secure Computer Network: Strategies and Challengers in Big Data Era". Journal of Computer Science and Technology 18, n. 03 (12 dicembre 2018): e28. http://dx.doi.org/10.24215/16666038.18.e28.
Testo completoYallamanda Rajesh Babu, Et al. "Subgraph Anomaly Detection in Social Networks using Clustering-Based Deep Autoencoders". International Journal on Recent and Innovation Trends in Computing and Communication 11, n. 9 (5 novembre 2023): 1646–55. http://dx.doi.org/10.17762/ijritcc.v11i9.9150.
Testo completoRizwan, Ramsha, Farrukh Aslam Khan, Haider Abbas e Sajjad Hussain Chauhdary. "Anomaly Detection in Wireless Sensor Networks Using Immune-Based Bioinspired Mechanism". International Journal of Distributed Sensor Networks 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/684952.
Testo completoBurgueño, Jesús, Isabel de-la-Bandera, Jessica Mendoza, David Palacios, Cesar Morillas e Raquel Barco. "Online Anomaly Detection System for Mobile Networks". Sensors 20, n. 24 (17 dicembre 2020): 7232. http://dx.doi.org/10.3390/s20247232.
Testo completoMa, Shu Hua, Jin Kuan Wang, Zhi Gang Liu e Hou Yan Jiang. "Density-Based Distributed Elliptical Anomaly Detection in Wireless Sensor Networks". Applied Mechanics and Materials 249-250 (dicembre 2012): 226–30. http://dx.doi.org/10.4028/www.scientific.net/amm.249-250.226.
Testo completoLegashev, Leonid, Irina Bolodurina, Lubov Zabrodina, Yuri Ushakov, Alexander Shukhman, Denis Parfenov, Yong Zhou e Yan Xu. "Message Authentication and Network Anomalies Detection in Vehicular Ad Hoc Networks". Security and Communication Networks 2022 (24 febbraio 2022): 1–18. http://dx.doi.org/10.1155/2022/9440886.
Testo completoMillán-Roures, Laura, Irene Epifanio e Vicente Martínez. "Detection of Anomalies in Water Networks by Functional Data Analysis". Mathematical Problems in Engineering 2018 (21 giugno 2018): 1–13. http://dx.doi.org/10.1155/2018/5129735.
Testo completoBattini Sujatha, Et al. "An Efficient Fuzzy Based Multi Level Clustering Model Using Artificial Bee Colony For Intrusion Detection". International Journal on Recent and Innovation Trends in Computing and Communication 11, n. 11 (30 novembre 2023): 264–73. http://dx.doi.org/10.17762/ijritcc.v11i11.9390.
Testo completoAlfardus, Asma, e Danda B. Rawat. "Machine Learning-Based Anomaly Detection for Securing In-Vehicle Networks". Electronics 13, n. 10 (16 maggio 2024): 1962. http://dx.doi.org/10.3390/electronics13101962.
Testo completoŽarković, Mileta, e Goran Dobrić. "Artificial Intelligence for Energy Theft Detection in Distribution Networks". Energies 17, n. 7 (26 marzo 2024): 1580. http://dx.doi.org/10.3390/en17071580.
Testo completoRovatsos, Georgios, George V. Moustakides e Venugopal V. Veeravalli. "Quickest Detection of Moving Anomalies in Sensor Networks". IEEE Journal on Selected Areas in Information Theory 2, n. 2 (giugno 2021): 762–73. http://dx.doi.org/10.1109/jsait.2021.3076043.
Testo completoTian, Hui, Jingtian Liu e Meimei Ding. "Promising techniques for anomaly detection on network traffic". Computer Science and Information Systems 14, n. 3 (2017): 597–609. http://dx.doi.org/10.2298/csis170201018h.
Testo completoGarcía González, Gastón, Pedro Casas, Alicia Fernández e Gabriel Gómez. "On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series". ACM SIGMETRICS Performance Evaluation Review 48, n. 4 (17 maggio 2021): 49–52. http://dx.doi.org/10.1145/3466826.3466843.
Testo completoYan Lei. "Smart Network Forensics with Generative Adversarial Networks Leveraging Blockchain for Anomaly Detection and Immutable Audit Trails". Power System Technology 48, n. 1 (28 maggio 2024): 1625–42. http://dx.doi.org/10.52783/pst.432.
Testo completoKuang, Ye, Dandan Li, Xiaohong Huang e Mo Zhou. "On the Modeling of RTT Time Series for Network Anomaly Detection". Security and Communication Networks 2022 (6 maggio 2022): 1–13. http://dx.doi.org/10.1155/2022/5499080.
Testo completoHajirahimova, Makrufa, e Leyla Yusifova. "Experimental Study of Machine Learning Methods in Anomaly Detection". Problems of Information Technology 13, n. 1 (24 gennaio 2022): 9–19. http://dx.doi.org/10.25045/jpit.v13.i1.02.
Testo completoZehra, Sehar, Ummay Faseeha, Hassan Jamil Syed, Fahad Samad, Ashraf Osman Ibrahim, Anas W. Abulfaraj e Wamda Nagmeldin. "Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey". Sensors 23, n. 11 (5 giugno 2023): 5340. http://dx.doi.org/10.3390/s23115340.
Testo completoRadivilova, Tamara, Lyudmyla Kirichenko, Maksym Tawalbeh e Andrii Ilkov. "DETECTION OF ANOMALIES IN THE TELECOMMUNICATIONS TRAFFIC BY STATISTICAL METHODS". Cybersecurity: Education, Science, Technique 11, n. 3 (2021): 183–94. http://dx.doi.org/10.28925/2663-4023.2021.11.183194.
Testo completoSousa, Inês Sousa, António Casimiro e José Cecílio. "Artificial Neural Networks for Real-Time Data Quality Assurance". ACM SIGAda Ada Letters 42, n. 1 (15 dicembre 2022): 86–89. http://dx.doi.org/10.1145/3577949.3577966.
Testo completoKomadina, Adrian, Ivan Kovačević, Bruno Štengl e Stjepan Groš. "Comparative Analysis of Anomaly Detection Approaches in Firewall Logs: Integrating Light-Weight Synthesis of Security Logs and Artificially Generated Attack Detection". Sensors 24, n. 8 (20 aprile 2024): 2636. http://dx.doi.org/10.3390/s24082636.
Testo completoRajaboevich, Gulomov Sherzod, e Ganiev Abdukhalil Abdujalilovich. "Methods and models of protecting computer networks from un-wanted network traffic". International Journal of Engineering & Technology 7, n. 4 (24 settembre 2018): 2541. http://dx.doi.org/10.14419/ijet.v7i4.14744.
Testo completoDymora, Paweł, e Mirosław Mazurek. "Anomaly Detection in IoT Communication Network Based on Spectral Analysis and Hurst Exponent". Applied Sciences 9, n. 24 (6 dicembre 2019): 5319. http://dx.doi.org/10.3390/app9245319.
Testo completoMandrikova, O. V. "Intelligent methods for natural data analysis: application to space weather". Computer Optics 48, n. 1 (febbraio 2024): 139–48. http://dx.doi.org/10.18287/2412-6179-co-1367.
Testo completoHabeeb, Mohammed Sayeeduddin, e Tummala Ranga Babu. "MS-CFFS: Multistage Coarse and Fine Feature Selecton for Advanced Anomaly Detection in IoT Security Networks". International Journal of Electrical and Electronics Research 12, n. 3 (25 luglio 2024): 780–90. http://dx.doi.org/10.37391/ijeer.120308.
Testo completoLópez-Vizcaíno, Manuel, Carlos Dafonte, Francisco Nóvoa, Daniel Garabato e M. Álvarez. "Network Data Unsupervised Clustering to Anomaly Detection". Proceedings 2, n. 18 (17 settembre 2018): 1173. http://dx.doi.org/10.3390/proceedings2181173.
Testo completoMeneganti, M., F. S. Saviello e R. Tagliaferri. "Fuzzy neural networks for classification and detection of anomalies". IEEE Transactions on Neural Networks 9, n. 5 (1998): 848–61. http://dx.doi.org/10.1109/72.712157.
Testo completoP, Bharathisindhu, e Dr S.SelvaBrunda. "Probability Model for Intrusion Detection System in Mobile Adhoc Network". International Journal of Engineering & Technology 7, n. 2.20 (18 aprile 2018): 302. http://dx.doi.org/10.14419/ijet.v7i2.20.16722.
Testo completo.., Pallavi, e Sarika Chaudhary. "Maximizing Anomaly Detection Performance in Next-Generation Networks". Journal of Cybersecurity and Information Management 12, n. 2 (2023): 36–51. http://dx.doi.org/10.54216/jcim.120203.
Testo completoSun, Yumeng. "Unsupervised Wireless Network Model-Assisted Abnormal Warning Information in Government Management". Journal of Sensors 2021 (26 ottobre 2021): 1–12. http://dx.doi.org/10.1155/2021/1614055.
Testo completoClausen, Henry, Gudmund Grov e David Aspinall. "CBAM: A Contextual Model for Network Anomaly Detection". Computers 10, n. 6 (11 giugno 2021): 79. http://dx.doi.org/10.3390/computers10060079.
Testo completoYu, Xiang, Hui Lu, Xianfei Yang, Ying Chen, Haifeng Song, Jianhua Li e Wei Shi. "An adaptive method based on contextual anomaly detection in Internet of Things through wireless sensor networks". International Journal of Distributed Sensor Networks 16, n. 5 (maggio 2020): 155014772092047. http://dx.doi.org/10.1177/1550147720920478.
Testo completoMeleshko, Alexey, Anton Shulepov, Vasily Desnitsky e Evgenia Novikova. "Integrated approach to revelation of anomalies in wireless sensor networks for water control cases". Computer Tools in Education, n. 1 (28 marzo 2021): 58–67. http://dx.doi.org/10.32603/2071-2340-2021-1-59-68.
Testo completoKhilar, Rashmita, K. Mariyappan, Mary Subaja Christo, J. Amutharaj, T. Anitha, T. Rajendran e Areda Batu. "Artificial Intelligence-Based Security Protocols to Resist Attacks in Internet of Things". Wireless Communications and Mobile Computing 2022 (5 aprile 2022): 1–10. http://dx.doi.org/10.1155/2022/1440538.
Testo completoDymora, Paweł, e Mirosław Mazurek. "An Innovative Approach to Anomaly Detection in Communication Networks Using Multifractal Analysis". Applied Sciences 10, n. 9 (8 maggio 2020): 3277. http://dx.doi.org/10.3390/app10093277.
Testo completoPatel, Darsh, Kathiravan Srinivasan, Chuan-Yu Chang, Takshi Gupta e Aman Kataria. "Network Anomaly Detection inside Consumer Networks—A Hybrid Approach". Electronics 9, n. 6 (1 giugno 2020): 923. http://dx.doi.org/10.3390/electronics9060923.
Testo completoImtiaz, Syed Ibrahim, Liaqat Ali Khan, Ahmad S. Almadhor, Sidra Abbas, Shtwai Alsubai, Michal Gregus e Zunera Jalil. "Efficient Approach for Anomaly Detection in Internet of Things Traffic Using Deep Learning". Wireless Communications and Mobile Computing 2022 (10 settembre 2022): 1–15. http://dx.doi.org/10.1155/2022/8266347.
Testo completo