Letteratura scientifica selezionata sul tema "Network data representation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Network data representation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Network data representation"
R.Tamilarasu e G. Soundarya Devi. "Improvising Connection In 5g By Means Of Particle Swarm Optimization Techniques". South Asian Journal of Engineering and Technology 14, n. 2 (30 aprile 2024): 1–6. http://dx.doi.org/10.26524/sajet.2023.14.2.
Testo completoYe, Zhonglin, Haixing Zhao, Ke Zhang, Yu Zhu e Zhaoyang Wang. "An Optimized Network Representation Learning Algorithm Using Multi-Relational Data". Mathematics 7, n. 5 (21 maggio 2019): 460. http://dx.doi.org/10.3390/math7050460.
Testo completoArmenta, Marco, e Pierre-Marc Jodoin. "The Representation Theory of Neural Networks". Mathematics 9, n. 24 (13 dicembre 2021): 3216. http://dx.doi.org/10.3390/math9243216.
Testo completoAristizábal Q, Luz Angela, e Nicolás Toro G. "Multilayer Representation and Multiscale Analysis on Data Networks". International journal of Computer Networks & Communications 13, n. 3 (31 maggio 2021): 41–55. http://dx.doi.org/10.5121/ijcnc.2021.13303.
Testo completoNguyễn, Tuấn, Nguyen Hai Hao, Dang Le Dinh Trang, Nguyen Van Tuan e Cao Van Loi. "Robust anomaly detection methods for contamination network data". Journal of Military Science and Technology, n. 79 (19 maggio 2022): 41–51. http://dx.doi.org/10.54939/1859-1043.j.mst.79.2022.41-51.
Testo completoDu, Xin, Yulong Pei, Wouter Duivesteijn e Mykola Pechenizkiy. "Fairness in Network Representation by Latent Structural Heterogeneity in Observational Data". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 3809–16. http://dx.doi.org/10.1609/aaai.v34i04.5792.
Testo completoDongming Chen, Dongming Chen, Mingshuo Nie Dongming Chen, Jiarui Yan Mingshuo Nie, Jiangnan Meng Jiarui Yan e Dongqi Wang Jiangnan Meng. "Network Representation Learning Algorithm Based on Community Folding". 網際網路技術學刊 23, n. 2 (marzo 2022): 415–23. http://dx.doi.org/10.53106/160792642022032302020.
Testo completoZhang, Xiaoxian, Jianpei Zhang e Jing Yang. "Large-scale dynamic social data representation for structure feature learning". Journal of Intelligent & Fuzzy Systems 39, n. 4 (21 ottobre 2020): 5253–62. http://dx.doi.org/10.3233/jifs-189010.
Testo completoKapoor, Maya, Michael Napolitano, Jonathan Quance, Thomas Moyer e Siddharth Krishnan. "Detecting VoIP Data Streams: Approaches Using Hidden Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 13 (26 giugno 2023): 15519–27. http://dx.doi.org/10.1609/aaai.v37i13.26840.
Testo completoGiannarakis, Nick, Alexandra Silva e David Walker. "ProbNV: probabilistic verification of network control planes". Proceedings of the ACM on Programming Languages 5, ICFP (22 agosto 2021): 1–30. http://dx.doi.org/10.1145/3473595.
Testo completoTesi sul tema "Network data representation"
Lim, Chong-U. "Modeling player self-representation in multiplayer online games using social network data". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82409.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-105).
Game players express values related to self-expression through various means such as avatar customization, gameplay style, and interactions with other players. Multiplayer online games are now often integrated with social networks that provide social contexts in which player-to-player interactions take place, such as conversation and trading of virtual items. Building upon a theoretical framework based in machine learning and cognitive science, I present results from a novel approach to modeling and analyzing player values in terms of both preferences in avatar customization and patterns in social network use. To facilitate this work, I developed the Steam-Player- Preference Analyzer (Steam-PPA) system, which performs advanced data collection on publicly available social networking profile information. The primary contribution of this thesis is the AIR Toolkit Status Performance Classifier (AIR-SPC), which uses machine learning techniques including k-means clustering, natural language processing (NLP), and support vector machines (SVM) to perform inference on the data. As an initial case study, I use Steam-PPA to collect gameplay and avatar customization information from players in the popular, and commercially successful, multi-player first-person-shooter game Team Fortress 2 (TF2). Next, I use AIR-SPC to analyze the information from profiles on the social network Steam. The upshot is that I use social networking information to predict the likelihood of players customizing their profile in several ways associated with the monetary values of their avatars. In this manner I have developed a computational model of aspects of players' digital social identity capable of predicting specific values in terms of preferences exhibited within a virtual game-world.
by Chong-U Lim.
S.M.
Lee, John Boaz T. "Deep Learning on Graph-structured Data". Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/570.
Testo completoAzorin, Raphael. "Traffic representations for network measurements". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS141.
Testo completoMeasurements are essential to operate and manage computer networks, as they are critical to analyze performance and establish diagnosis. In particular, per-flow monitoring consists in computing metrics that characterize the individual data streams traversing the network. To develop relevant traffic representations, operators need to select suitable flow characteristics and carefully relate their cost of extraction with their expressiveness for the downstream tasks considered. In this thesis, we propose novel methodologies to extract appropriate traffic representations. In particular, we posit that Machine Learning can enhance measurement systems, thanks to its ability to learn patterns from data, in order to provide predictions of pertinent traffic characteristics.The first contribution of this thesis is a framework for sketch-based measurements systems to exploit the skewed nature of network traffic. Specifically, we propose a novel data structure representation that leverages sketches' under-utilization, reducing per-flow measurements memory footprint by storing only relevant counters. The second contribution is a Machine Learning-assisted monitoring system that integrates a lightweight traffic classifier. In particular, we segregate large and small flows in the data plane, before processing them separately with dedicated data structures for various use cases. The last contributions address the design of a unified Deep Learning measurement pipeline that extracts rich representations from traffic data for network analysis. We first draw from recent advances in sequence modeling to learn representations from both numerical and categorical traffic data. These representations serve as input to solve complex networking tasks such as clickstream identification and mobile terminal movement prediction in WLAN. Finally, we present an empirical study of task affinity to assess when two tasks would benefit from being learned together
SURANO, FRANCESCO VINCENZO. "Unveiling human interactions : approaches and techniques toward the discovery and representation of interactions in networks". Doctoral thesis, Politecnico di Torino, 2023. https://hdl.handle.net/11583/2975708.
Testo completoWoodbury, Nathan Scott. "Representation and Reconstruction of Linear, Time-Invariant Networks". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7402.
Testo completoMartignano, Anna. "Real-time Anomaly Detection on Financial Data". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281832.
Testo completoDetta arbete presenterar en undersökning av tillämpningar av Network Representation Learning (NRL) inom den finansiella industrin. Metoder inom NRL möjliggör datadriven kondensering av grafstrukturer till lågdimensionella och lätthanterliga vektorer.Dessa vektorer kan sedan användas i andra maskininlärningsuppgifter. Närmare bestämt, kan metoder inom NRL underlätta hantering av och informantionsutvinning ur beräkningsintensiva och storskaliga grafer inom den finansiella sektorn, till exempel avvikelsehantering bland finansiella transaktioner. Arbetet med data av denna typ försvåras av det faktum att transaktionsgrafer är dynamiska och i konstant förändring. Utöver detta kan noderna, dvs transaktionspunkterna, vara vitt skilda eller med andra ord härstamma från olika fördelningar.I detta arbete har Graph Convolutional Network (ConvGNN) ansetts till den mest lämpliga lösningen för nämnda tillämpningar riktade mot upptäckt av avvikelser i transaktioner. GraphSAGE har använts som utgångspunkt för experimenten i två olika varianter: en dynamisk version där vikterna uppdateras allteftersom nya transaktionssekvenser matas in, och en variant avsedd särskilt för bipartita (tvådelade) grafer. Dessa varianter har utvärderats genom användning av faktiska datamängder med avvikelsehantering som slutmål.
GARBARINO, DAVIDE. "Acknowledging the structured nature of real-world data with graphs embeddings and probabilistic inference methods". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1092453.
Testo completoRANDAZZO, VINCENZO. "Novel neural approaches to data topology analysis and telemedicine". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850610.
Testo completoLucke, Helmut. "On the representation of temporal data for connectionist word recognition". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239520.
Testo completoCori, Marcel. "Modèles pour la représentation et l'interrogation de données textuelles et de connaissances". Paris 7, 1987. http://www.theses.fr/1987PA077047.
Testo completoLibri sul tema "Network data representation"
service), SpringerLink (Online, a cura di. Guide to Computer Network Security. 2a ed. London: Springer London, 2013.
Cerca il testo completoHill, Richard. Guide to Cloud Computing: Principles and Practice. London: Springer London, 2013.
Cerca il testo completoVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Testo completoLaszlo, Berke, Murthy P. L. N e United States. National Aeronautics and Space Administration., a cura di. Material data representation of hysteresis loops for Hastelloy X using artificial neural networks. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Cerca il testo completoLaszlo, Berke, Murthy P. L. N e United States. National Aeronautics and Space Administration., a cura di. Material data representation of hysteresis loops for Hastelloy X using artificial neural networks. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Cerca il testo completoBrath, Richard Karl. Effective information visualization guidelines and metrics for 3D interactive representations of business data. [Toronto]: Brath, 1999.
Cerca il testo completoS, Drew Mark, a cura di. Fundamentals of multimedia. Upper Saddle River, NJ: Pearson Prentice Hall, 2004.
Cerca il testo completoRiaño, David. Knowledge Representation for Health-Care: ECAI 2010 Workshop KR4HC 2010, Lisbon, Portugal, August 17, 2010, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
Cerca il testo completoDiagrams 2010 (2010 Portland, Or.). Diagrammatic representation and inference: 6th international conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010 : proceedings. Berlin: Springer, 2010.
Cerca il testo completoGerhard, Friedrich, Gottlob Georg, Katzenbeisser Stefan, Turán György e SpringerLink (Online service), a cura di. SOFSEM 2012: Theory and Practice of Computer Science: 38th Conference on Current Trends in Theory and Practice of Computer Science, Špindlerův Mlýn, Czech Republic, January 21-27, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Cerca il testo completoCapitoli di libri sul tema "Network data representation"
Gaudel, Bijay, Donghai Guan, Weiwei Yuan, Deepanjal Shrestha, Bing Chen e Yaofeng Tu. "Graph Representation Learning Using Attention Network". In Big Data, 137–47. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0705-9_10.
Testo completoSchestakov, Stefan, Paul Heinemeyer e Elena Demidova. "Road Network Representation Learning with Vehicle Trajectories". In Advances in Knowledge Discovery and Data Mining, 57–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33383-5_5.
Testo completoWang, Binglei, Tong Xu, Hao Wang, Yanmin Chen, Le Zhang, Lintao Fang, Guiquan Liu e Enhong Chen. "Author Contributed Representation for Scholarly Network". In Web and Big Data, 558–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60259-8_41.
Testo completoZhang, Si, Yinglong Xia, Yan Zhu e Hanghang Tong. "Representation Learning on Dynamic Network of Networks". In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), 298–306. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2023. http://dx.doi.org/10.1137/1.9781611977653.ch34.
Testo completoZhang, Yan, Zhao Zhang, Zheng Zhang, Mingbo Zhao, Li Zhang, Zhengjun Zha e Meng Wang. "Deep Self-representative Concept Factorization Network for Representation Learning". In Proceedings of the 2020 SIAM International Conference on Data Mining, 361–69. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611976236.41.
Testo completoScheider, Simon, e Werner Kuhn. "Road Networks and Their Incomplete Representation by Network Data Models". In Geographic Information Science, 290–307. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87473-7_19.
Testo completoZhang, Shaowei, Zhao Li, Xin Wang, Zirui Chen e WenBin Guo. "TKGAT: Temporal Knowledge Graph Representation Learning Using Attention Network". In Advanced Data Mining and Applications, 46–61. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-46664-9_4.
Testo completoSkabek, Krzysztof, e Łukasz Ząbik. "Network Transmission of 3D Mesh Data Using Progressive Representation". In Computer Networks, 325–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02671-3_38.
Testo completoChen, Weizheng, Jinpeng Wang, Zhuoxuan Jiang, Yan Zhang e Xiaoming Li. "Hierarchical Mixed Neural Network for Joint Representation Learning of Social-Attribute Network". In Advances in Knowledge Discovery and Data Mining, 238–50. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57454-7_19.
Testo completoAnuradha, T., Arun Tigadi, M. Ravikumar, Paparao Nalajala, S. Hemavathi e Manoranjan Dash. "Feature Extraction and Representation Learning via Deep Neural Network". In Computer Networks, Big Data and IoT, 551–64. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0898-9_44.
Testo completoAtti di convegni sul tema "Network data representation"
Luo, Xuexiong, Jia Wu, Chuan Zhou, Xiankun Zhang e Yuan Wang. "Deep Semantic Network Representation". In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00141.
Testo completoGao, Li, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan e Yue Hu. "Active Discriminative Network Representation Learning". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/296.
Testo completoHansen, Brian, Leya Breanna Baltaxe-Admony, Sri Kurniawan e Angus G. Forbes. "Exploring Sonic Parameter Mapping for Network Data Structures". In ICAD 2019: The 25th International Conference on Auditory Display. Newcastle upon Tyne, United Kingdom: Department of Computer and Information Sciences, Northumbria University, 2019. http://dx.doi.org/10.21785/icad2019.055.
Testo completoZhang, Xiangliang. "Mining Streaming and Temporal Data: from Representation to Knowledge". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/821.
Testo completoHou, Mingliang, Jing Ren, Falih Febrinanto, Ahsan Shehzad e Feng Xia. "Cross Network Representation Matching with Outliers". In 2021 International Conference on Data Mining Workshops (ICDMW). IEEE, 2021. http://dx.doi.org/10.1109/icdmw53433.2021.00124.
Testo completoBandyopadhyay, Sambaran, Manasvi Aggarwal e M. Narasimha Murty. "Self-supervised Hierarchical Graph Neural Network for Graph Representation". In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9377860.
Testo completoYu, Yanlei, Zhiwu Lu, Jiajun Liu, Guoping Zhao e Ji-rong Wen. "RUM: Network Representation Learning Using Motifs". In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019. http://dx.doi.org/10.1109/icde.2019.00125.
Testo completoZhang, Chuxu, Meng Jiang, Xiangliang Zhang, Yanfang Ye e Nitesh V. Chawla. "Multi-modal Network Representation Learning". In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3394486.3406475.
Testo completoYang, Hong, Shirui Pan, Ling Chen, Chuan Zhou e Peng Zhang. "Low-Bit Quantization for Attributed Network Representation Learning". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/562.
Testo completoGuan, Zhanming, Bin Wu, Bai Wang e Hezi Liu. "Personality2vec: Network Representation Learning for Personality". In 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). IEEE, 2020. http://dx.doi.org/10.1109/dsc50466.2020.00013.
Testo completoRapporti di organizzazioni sul tema "Network data representation"
Haynes, T., e D. Noveck, a cura di. Network File System (NFS) Version 4 External Data Representation Standard (XDR) Description. RFC Editor, marzo 2015. http://dx.doi.org/10.17487/rfc7531.
Testo completoShepler, S., M. Eisler e D. Noveck, a cura di. Network File System (NFS) Version 4 Minor Version 1 External Data Representation Standard (XDR) Description. RFC Editor, gennaio 2010. http://dx.doi.org/10.17487/rfc5662.
Testo completoHaynes, T. Network File System (NFS) Version 4 Minor Version 2 External Data Representation Standard (XDR) Description. RFC Editor, novembre 2016. http://dx.doi.org/10.17487/rfc7863.
Testo completoZanoni, Wladimir, Jimena Romero, Nicolás Chuquimarca e Emmanuel Abuelafia. Dealing with Hard-to-Reach Populations in Panel Data: Respondent-Driven Survey (RDS) and Attrition. Inter-American Development Bank, ottobre 2023. http://dx.doi.org/10.18235/0005194.
Testo completoHenderson, Tim, Mincent Santucci, Tim Connors e Justin Tweet. National Park Service geologic type section inventory: Chihuahuan Desert Inventory & Monitoring Network. National Park Service, aprile 2021. http://dx.doi.org/10.36967/nrr-2285306.
Testo completoHenderson, Tim, Vincent Santucci, Tim Connors e Justin Tweet. National Park Service geologic type section inventory: Northern Colorado Plateau Inventory & Monitoring Network. National Park Service, aprile 2021. http://dx.doi.org/10.36967/nrr-2285337.
Testo completoHenderson, Tim, Vincent Santucci, Tim Connors e Justin Tweet. National Park Service geologic type section inventory: Klamath Inventory & Monitoring Network. National Park Service, luglio 2021. http://dx.doi.org/10.36967/nrr-2286915.
Testo completoHenderson, Tim, Vincent Santucci, Tim Connors e Justin Tweet. National Park Service geologic type section inventory: Mojave Desert Inventory & Monitoring Network. National Park Service, dicembre 2021. http://dx.doi.org/10.36967/nrr-2289952.
Testo completoHenderson, Tim, Vincet Santucci, Tim Connors e Justin Tweet. National Park Service geologic type section inventory: North Coast and Cascades Inventory & Monitoring Network. National Park Service, marzo 2022. http://dx.doi.org/10.36967/nrr-2293013.
Testo completoHenderson, Tim, Vincent Santucci, Tim Connors e Justin Tweet. National Park Service geologic type section inventory: Central Alaska Inventory & Monitoring Network. National Park Service, maggio 2022. http://dx.doi.org/10.36967/nrr-2293381.
Testo completo