Segui questo link per vedere altri tipi di pubblicazioni sul tema: Narrow band gap.

Articoli di riviste sul tema "Narrow band gap"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Narrow band gap".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Cui, Qiuhong, e Guillermo C. Bazan. "Narrow Band Gap Conjugated Polyelectrolytes". Accounts of Chemical Research 51, n. 1 (14 dicembre 2017): 202–11. http://dx.doi.org/10.1021/acs.accounts.7b00501.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Henson, Zachary B., Gregory C. Welch, Thomas van der Poll e Guillermo C. Bazan. "Pyridalthiadiazole-Based Narrow Band Gap Chromophores". Journal of the American Chemical Society 134, n. 8 (17 febbraio 2012): 3766–79. http://dx.doi.org/10.1021/ja209331y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Filonov, A. B., D. B. Migas, V. L. Shaposhnikov, V. E. Borisenko e A. Heinrich. "Narrow-gap semiconducting silicides: the band structure". Microelectronic Engineering 50, n. 1-4 (gennaio 2000): 249–55. http://dx.doi.org/10.1016/s0167-9317(99)00289-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Walukiewicz, Wladek. "Narrow band gap group III-nitride alloys". Physica E: Low-dimensional Systems and Nanostructures 20, n. 3-4 (gennaio 2004): 300–307. http://dx.doi.org/10.1016/j.physe.2003.08.023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Hayase, Shuzi. "Perovskite solar cells with narrow band gap". Current Opinion in Electrochemistry 11 (ottobre 2018): 146–50. http://dx.doi.org/10.1016/j.coelec.2018.10.017.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Galaiko, V. P., E. V. Bezuglyi, E. N. Bratus’ e V. S. Shumeiko. "Relaxation processes and kinetic phenomena in narrow-gap superconductors". Soviet Journal of Low Temperature Physics 14, n. 4 (1 aprile 1988): 242–44. https://doi.org/10.1063/10.0031925.

Testo completo
Abstract (sommario):
The possibility of using the two-band superconductor model1 by taking into consideration the electron scattering at the lattice defects and the correlation interaction of the wide- and narrow-band electrons for describing the kinetic properties of high-Tc superconductors (HTS) in normal state is discussed. Specific features of the relaxation processes in the electron system of a narrow-band conductor, viz. the non-Born impurity scattering in the region of band overlapping, and an anomalous increase in the electron–electron scattering for a partially filled narrow band, are explained. The temperature dependence of resistance, caused by the interference of various relaxation mechanisms, contains a broad-linear region typical of HTS, while the thermoelectric coefficient has an anomalously large value which reverses its sign upon a variation of temperature and electron concentration. A comparison is made between the kinetic and thermodynamic properties of the two-band model for different values of its microscopic parameters.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Dashevsky, Z., V. Kasiyan, S. Asmontas, J. Gradauskas, E. Shirmulis, E. Flitsiyan e L. Chernyak. "Photothermal effect in narrow band gap PbTe semiconductor". Journal of Applied Physics 106, n. 7 (ottobre 2009): 076105. http://dx.doi.org/10.1063/1.3243081.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Jenekhe, Samson A. "A class of narrow-band-gap semiconducting polymers". Nature 322, n. 6077 (luglio 1986): 345–47. http://dx.doi.org/10.1038/322345a0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sofo, J. O., e G. D. Mahan. "Electronic structure ofCoSb3:A narrow-band-gap semiconductor". Physical Review B 58, n. 23 (15 dicembre 1998): 15620–23. http://dx.doi.org/10.1103/physrevb.58.15620.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Mahanti, S. D., Khang Hoang e Salameh Ahmad. "Deep defect states in narrow band-gap semiconductors". Physica B: Condensed Matter 401-402 (dicembre 2007): 291–95. http://dx.doi.org/10.1016/j.physb.2007.08.169.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Haddad, G. I., R. K. Mains, U. K. Reddy e J. R. East. "A proposed narrow-band-gap base transistor structure". Superlattices and Microstructures 5, n. 3 (gennaio 1989): 437–41. http://dx.doi.org/10.1016/0749-6036(89)90329-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Triboulet, R. "MOVPE of narrow band gap II–VI materials". Journal of Crystal Growth 107, n. 1-4 (gennaio 1991): 598–604. http://dx.doi.org/10.1016/0022-0248(91)90527-c.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Singh, M., e P. R. Wallace. "Inter-band magneto-optics in narrow-gap semiconductors". Journal of Physics C: Solid State Physics 20, n. 14 (20 maggio 1987): 2169–81. http://dx.doi.org/10.1088/0022-3719/20/14/018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Sun, Peijie, Niels Oeschler, Simon Johnsen, Bo B. Iversen e Frank Steglich. "Narrow band gap and enhanced thermoelectricity in FeSb2". Dalton Trans. 39, n. 4 (2010): 1012–19. http://dx.doi.org/10.1039/b918909b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Humayun, M. A., M. A. Rashid, F. A. Malek, A. N. Hussain e I. Daut. "Design of Quantum Dot Based LASER with Ultra-Low Threshold Current Density". Applied Mechanics and Materials 229-231 (novembre 2012): 1639–42. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.1639.

Testo completo
Abstract (sommario):
Reduction in threshold current density is the major challenge in the field of semiconductor laser design. The threshold current density can be minimized by introducing low dimensional material system with narrow band gap. InN has a narrow band gap of 0.7 eV and quantum dot provides three dimensional confinement factor. In this paper, we propose then InN quantum dot as the active layer material that will serve both the purpose of narrow band gap and three dimensional confinement. The simulation results show that the current density reduces drastically with the cavity length.
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Chu, Jun‐hao, Zheng‐yu Mi e Ding‐yuan Tang. "Band‐to‐band optical absorption in narrow‐gap Hg1−xCdxTe semiconductors". Journal of Applied Physics 71, n. 8 (15 aprile 1992): 3955–61. http://dx.doi.org/10.1063/1.350867.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Choi, J. B., S. Liu e H. D. Drew. "Metallic impurity band in the narrow-band-gap semiconductorn-type InSb". Physical Review B 43, n. 5 (15 febbraio 1991): 4046–50. http://dx.doi.org/10.1103/physrevb.43.4046.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Söderström, J. R., E. T. Yu, M. K. Jackson, Y. Rajakarunanayake e T. C. McGill. "Two‐band modeling of narrow band gap and interband tunneling devices". Journal of Applied Physics 68, n. 3 (agosto 1990): 1372–75. http://dx.doi.org/10.1063/1.346688.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Wei, Yong Sen. "Narrow-Band-Gap Polymer Photovoltaic Materials Synthesis and Photovoltaic Research". Applied Mechanics and Materials 273 (gennaio 2013): 468–72. http://dx.doi.org/10.4028/www.scientific.net/amm.273.468.

Testo completo
Abstract (sommario):
In recent years, research of the narrow-band-gap polymer photovoltaic (PV) materials in the field of light-emitting diodes, field effect transistors, solar cells and sensors has made tremendous progress and its application becomes more widely. In order to obtain a better performance of the photovoltaic material, in the process of design the polymer, we must consider the spectral range, the energy gap, the balance between the LUMO and HOMO level. Through the analysis of the narrow-band-gap polymers, this paper described the synthesis of the photovoltaic material, and detailed analyzes its photovoltaic characteristics. This paper introduces the double bonds to combine DTBT receptors and different electron donor, to synthesize new narrow-band-gap polymer photovoltaic materials with photovoltaic properties.
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Fang, Hui, Fei-Peng Zhang, Zhi-Nian Jiang, Jin-Yun Peng e Ru-Zhi Wang. "Strain-induced asymmetric modulation of band gap in narrow armchair-edge graphene nanoribbon". Modern Physics Letters B 29, n. 34 (20 dicembre 2015): 1550224. http://dx.doi.org/10.1142/s0217984915502243.

Testo completo
Abstract (sommario):
We investigate the band structure of narrow armchair-edge graphene nanoribbons (AGNRs) under tensile strain by means of an extension of the Extended Hückel method. The strain-induced band gap modulation presents asymmetric behavior. The asymmetric modulation of band gap is derived from the different changes of conduction and valence bands near Fermi level under tensile strain. Further analysis suggests that the asymmetric variation of band structure near Fermi level only appear in narrow armchair-edge graphene nanoribbons.
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Deng, J. Y., L. X. Guo e J. H. Yang. "Narrow Band Notches for Ultra-Wideband Antenna Using Electromagnetic Band-Gap Structures". Journal of Electromagnetic Waves and Applications 25, n. 17-18 (gennaio 2011): 2320–27. http://dx.doi.org/10.1163/156939311798806211.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Livache, Clément, Nicolas Goubet, Bertille Martinez, Amardeep Jagtap, Junling Qu, Sandrine Ithurria, Mathieu G. Silly, Benoit Dubertret e Emmanuel Lhuillier. "Band Edge Dynamics and Multiexciton Generation in Narrow Band Gap HgTe Nanocrystals". ACS Applied Materials & Interfaces 10, n. 14 (26 marzo 2018): 11880–87. http://dx.doi.org/10.1021/acsami.8b00153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Panday, Suman Raj, e Maxim Dzero. "Interacting fermions in narrow-gap semiconductors with band inversion". Journal of Physics: Condensed Matter 33, n. 27 (28 maggio 2021): 275601. http://dx.doi.org/10.1088/1361-648x/abfc6e.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Litovchenko, V., A. Evtukh, M. Semenenko, A. Grygoriev, O. Yilmazoglu, H. L. Hartnagel, L. Sirbu, I. M. Tiginyanu e V. V. Ursaki. "Electron field emission from narrow band gap semiconductors (InAs)". Semiconductor Science and Technology 22, n. 10 (5 settembre 2007): 1092–96. http://dx.doi.org/10.1088/0268-1242/22/10/003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Mookerjea, Saurabh, Ramakrishnan Krishnan, Aaron Vallett, Theresa Mayer e Suman Datta. "Inter-band Tunnel Transistor Architecture using Narrow Gap Semiconductors". ECS Transactions 19, n. 5 (18 dicembre 2019): 287–92. http://dx.doi.org/10.1149/1.3119553.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Liu, Xiaofeng, Yanming Sun, Louis A. Perez, Wen Wen, Michael F. Toney, Alan J. Heeger e Guillermo C. Bazan. "Narrow-Band-Gap Conjugated Chromophores with Extended Molecular Lengths". Journal of the American Chemical Society 134, n. 51 (13 dicembre 2012): 20609–12. http://dx.doi.org/10.1021/ja310483w.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Arbizzani, Catia, Mariaella Catellani, M. Grazia Cerroni e Marina Mastragostino. "Polydithienothiophenes: two new conjugated materials with narrow band gap". Synthetic Metals 84, n. 1-3 (gennaio 1997): 249–50. http://dx.doi.org/10.1016/s0379-6779(97)80736-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Del Nero, Jordan, e Bernardo Laks. "Spectroscopic study of polyazopyrroles (a narrow band gap system)". Synthetic Metals 101, n. 1-3 (maggio 1999): 440–41. http://dx.doi.org/10.1016/s0379-6779(98)01134-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Lee, Ven-Chung. "Electron-mediated indirect interaction in narrow-band-gap semiconductors". Physical Review B 44, n. 19 (15 novembre 1991): 10892–94. http://dx.doi.org/10.1103/physrevb.44.10892.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

White, J. K., C. A. Musca, H. C. Lee e L. Faraone. "Hydrogenation of ZnS passivation on narrow-band gap HgCdTe". Applied Physics Letters 76, n. 17 (24 aprile 2000): 2448–50. http://dx.doi.org/10.1063/1.126372.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Welch, Gregory C., e Guillermo C. Bazan. "Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers". Journal of the American Chemical Society 133, n. 12 (30 marzo 2011): 4632–44. http://dx.doi.org/10.1021/ja110968m.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Nachev, Ivo S. "Band-mixing and bound states in narrow-gap semiconductors". Physica Scripta 37, n. 5 (1 maggio 1988): 825–27. http://dx.doi.org/10.1088/0031-8949/37/5/032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Misra, S., G. S. Tripathi e P. K. Misra. "Temperature-dependent magnetic susceptibility of narrow band-gap semiconductors". Journal of Physics C: Solid State Physics 19, n. 12 (30 aprile 1986): 2007–19. http://dx.doi.org/10.1088/0022-3719/19/12/014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Gilbert, M. J., R. Akis e D. K. Ferry. "Semiconductor waveguide inversion in disordered narrow band-gap materials". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, n. 4 (2003): 1924. http://dx.doi.org/10.1116/1.1589521.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Luo, Ning, Gaohua Liao e H. Q. Xu. "k.p theory of freestanding narrow band gap semiconductor nanowires". AIP Advances 6, n. 12 (dicembre 2016): 125109. http://dx.doi.org/10.1063/1.4972987.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Magno, R., E. R. Glaser, B. P. Tinkham, J. G. Champlain, J. B. Boos, M. G. Ancona e P. M. Campbell. "Narrow band gap InGaSb, InAlAsSb alloys for electronic devices". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, n. 3 (2006): 1622. http://dx.doi.org/10.1116/1.2201448.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Lee, Y., M. Lee, S. Sadki, B. Tsuie e J. R. Reynolds. "A New Narrow Band Gap Electroactive Silole Containing Polymer". Molecular Crystals and Liquid Crystals 377, n. 1 (gennaio 2002): 289–92. http://dx.doi.org/10.1080/10587250211630.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Lhuillier, Emmanuel. "Narrow band gap nanocrystals for infrared cost-effective optoelectronics". Photoniques, n. 116 (2022): 54–57. http://dx.doi.org/10.1051/photon/202211654.

Testo completo
Abstract (sommario):
Infrared optoelectronics is driven by epitaxially grown semiconductors and the introduction of alternative materials is often viewed with some suspicion until the newcomer has demonstrated a high degree of viability. Infrared nanocrystals have certainly reached this degree of maturity switching from the demonstration of absorption by chemists to their integration into increasingly complex systems. Here, we review some of the recent developments relative to the integration of nanocrystal devices in the 1-5 µm range.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Mulenko, S. A., Y. V. Kudryavtsev e V. P. Mygashko. "Laser synthesis of semiconductor nanostructures with narrow band gap". Applied Surface Science 253, n. 19 (luglio 2007): 7973–76. http://dx.doi.org/10.1016/j.apsusc.2007.02.073.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

MALKOVA, M., e F. DOMINGUEZ-ADAME. "TRANSMISSION RESONANCES IN MAGNETIC STRUCTURES BASED ON NARROW-GAP SEMICONDUCTORS". Surface Review and Letters 07, n. 01n02 (febbraio 2000): 123–26. http://dx.doi.org/10.1142/s0218625x00000166.

Testo completo
Abstract (sommario):
In this work we are concerned with magnetic junction structures in which a homogeneous narrow-gap semiconductor is subjected to an inhomogeneous magnetic field, in an attempt to elucidate the band-structure effect on the resonance tunneling. Careful investigation of the transmission as a function of the energy shows that the resonances in the spectrum can appear. These are remnants of the Landau levels localized near the interface boundary. Comparing the solutions obtained within two-band and single-band models we found the allowed values of the momentum to be quite different, resulting in different resonant values of the transmission coefficient of electron transport through the magnetic interface.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Fan, Guang Hui, De Xun Zhao, Jiao He e Ying Kai Liu. "Transmission Properties in 2D Phononic Crystal Thin Plate with Linear Defect". Advanced Materials Research 652-654 (gennaio 2013): 1383–87. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.1383.

Testo completo
Abstract (sommario):
The band gap of 2D perfect phononic crystal thin plate was investigated by plane-wave expansion (PWE), which is consist of copper embedded in the organic glass with a square arrangement. The band gap of straight linear defect, branching linear defect, and symmetrical linear defect are calculated by supercell plane wave method respectively. It is found that the bandwidth of defect structure will become narrow. Especially there is little band gap appearing for straight linear defect. As the filling fraction varied, the band gap width and the band gap number changed.
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Aleshkin V. Ya. e Dubinov A. A. "Influence of quantum well parameters on the spectrum of two-dimensional plasmons in HgTe/CdHgTe heterostructures". Semiconductors 56, n. 13 (2022): 2026. http://dx.doi.org/10.21883/sc.2022.13.54781.45.

Testo completo
Abstract (sommario):
Influence of parameters of a quantum well and electronic polarizability spatial dispersion on the dependence of two-dimensional plasmon energy on wave vector in narrow-gap CdHgTe quantum wells (band gap 35 meV) is studied theoretically. It is shown that at energies above 20 meV, the dispersion law of two-dimensional plasmons is close to linear. Taking into account the finite width of the quantum well decreases the plasmon phase velocity. This effect increases with an increase in the fraction of cadmium in the QW while maintaining the band gap and with a decrease in the concentration of charge carriers in it. Keywords: two-dimensional plasmon, narrow-gap HgTe.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Sun, Chenglong. "Preparation and photocatalytic application of nonmetallic doped TiO2 films with narrow band gap". Applied and Computational Engineering 7, n. 1 (21 luglio 2023): 801–6. http://dx.doi.org/10.54254/2755-2721/7/20230516.

Testo completo
Abstract (sommario):
TiO2 thin film has become a widely used photocatalyst due to its stable chemical properties, suitable edge position, non-toxicity and low cost, and the film structure is conducive to recycling and loading. However, because the band gap of titanium dioxide is relatively wide, visible light is difficult to be utilized, which also limit the utilization of TiO2. In recent years, non-metallic doping has been proven to be an extraordinarily efficient methodologies to reduce band gap and improve photocatalytic efficiency of TiO2 films. In this paper, the basic principle of photocatalysis and the principle of reducing band gap by doping inorganic non-metallic elements are briefly introduced, and the preparation methods of N, C and B inorganic non-metallic elements doped TiO2 films are reviewed, as well as their functions on reducing band gap of TiO2. Finally, the research status of inorganic non-metallic element doped TiO2 thin film in photodecomposition of water and organic decomposition in catalytic solution was introduced.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Saidov, M. S. "Peculiarities of solar elements based on narrow-band-gap semiconductors". Applied Solar Energy 47, n. 4 (dicembre 2011): 259–62. http://dx.doi.org/10.3103/s0003701x1104013x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Liu Yanhong, 刘艳红, 董丽娟 Dong Lijuan, 刘丽想 Liu Lixiang e 石云龙 Shi Yunlong. "Narrow Bandpass Angular Filter Based on Anisotropic Photonic Band Gap". Acta Optica Sinica 33, n. 8 (2013): 0823001. http://dx.doi.org/10.3788/aos201333.0823001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Lind, Erik, Yann-Michel Niquet, Hector Mera e Lars-Erik Wernersson. "Accumulation capacitance of narrow band gap metal-oxide-semiconductor capacitors". Applied Physics Letters 96, n. 23 (7 giugno 2010): 233507. http://dx.doi.org/10.1063/1.3449559.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Liu, Xiaofeng, Ben B. Y. Hsu, Yanming Sun, Cheng-Kang Mai, Alan J. Heeger e Guillermo C. Bazan. "High Thermal Stability Solution-Processable Narrow-Band Gap Molecular Semiconductors". Journal of the American Chemical Society 136, n. 46 (5 novembre 2014): 16144–47. http://dx.doi.org/10.1021/ja510088x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Zhang, Han-Yue, Chun-Li Hu, Zhao-Bo Hu, Jiang-Gao Mao, You Song e Ren-Gen Xiong. "Narrow Band Gap Observed in a Molecular Ferroelastic: Ferrocenium Tetrachloroferrate". Journal of the American Chemical Society 142, n. 6 (23 gennaio 2020): 3240–45. http://dx.doi.org/10.1021/jacs.9b13446.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Popov, Andrei, Victor Sherstnev, Yury Yakovlev, Peter Werle e Robert Mücke. "Relaxation oscillations in single-frequency InAsSb narrow band-gap lasers". Applied Physics Letters 72, n. 26 (29 giugno 1998): 3428–30. http://dx.doi.org/10.1063/1.121655.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Zhang, Zhi-Xu, Han-Yue Zhang, Wei Zhang, Xiao-Gang Chen, Hui Wang e Ren-Gen Xiong. "Organometallic-Based Hybrid Perovskite Piezoelectrics with a Narrow Band Gap". Journal of the American Chemical Society 142, n. 41 (1 ottobre 2020): 17787–94. http://dx.doi.org/10.1021/jacs.0c09288.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia