Letteratura scientifica selezionata sul tema "Nanotubes"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Nanotubes".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Nanotubes"
Hajeeassa, Khdejah S., Mahmoud A. Hussein, Yasir Anwar, Nada Y. Tashkandi e Zahra M. Al-amshany. "Nanocomposites containing polyvinyl alcohol and reinforced carbon-based nanofiller". Nanobiomedicine 5 (1 gennaio 2018): 184954351879481. http://dx.doi.org/10.1177/1849543518794818.
Testo completoJin, Wei, Wen Chen, Bai Tao Dong, Chun Xia Zhao, Li Qiang Mai e Ying Dai. "V2O5 Nanotubes Novel Gas Sensor with High Sensitivity for Ethanol". Key Engineering Materials 421-422 (dicembre 2009): 328–31. http://dx.doi.org/10.4028/www.scientific.net/kem.421-422.328.
Testo completoPrasad, Shiva, Harish Venkat Reddy e Ashok Godekere. "Properties of Carbon Nanotubes and their applications in Nanotechnology – A Review". Mapana Journal of Sciences 20, n. 4 (1 ottobre 2021): 49–64. http://dx.doi.org/10.12723/mjs.59.4.
Testo completoHou, Wenyi, e Shaoping Xiao. "Mechanical Behaviors of Carbon Nanotubes with Randomly Located Vacancy Defects". Journal of Nanoscience and Nanotechnology 7, n. 12 (1 dicembre 2007): 4478–85. http://dx.doi.org/10.1166/jnn.2007.862.
Testo completoLin, Tong, Vardhan Bajpai, Tao Ji e Liming Dai. "Chemistry of Carbon Nanotubes". Australian Journal of Chemistry 56, n. 7 (2003): 635. http://dx.doi.org/10.1071/ch02254.
Testo completoACAR, Muhammet Taha. "Investigation of the effects of Sr and Mn doping on corrosion tribocorrosion and cyclic voltammetry performances of TiO2 nanotubes". European Mechanical Science 7, n. 3 (20 settembre 2023): 138–45. http://dx.doi.org/10.26701/ems.1265161.
Testo completoLe, Minh Tai, e Shyh Chour Huang. "Modeling and Analysis the Effect of Helical Carbon Nanotube Morphology on the Mechanical Properties of Nanocomposites Using Hexagonal Representative Volume Element". Applied Mechanics and Materials 577 (luglio 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amm.577.3.
Testo completoSyahriza Ismail, Khairil Azwa Khairul, Zainovia Lockman e Zhwan Dilshad Ibrahim Sktani. "Mechanism of Co3O4-TiO2 Nanocomposite Formation with Enhanced Photocatalytic Performance". Journal of Advanced Research in Micro and Nano Engineering 23, n. 1 (2 ottobre 2024): 49–60. http://dx.doi.org/10.37934/armne.23.1.4960.
Testo completoGábor, T., D. Aranyi, Katalin Papp, F. H. Kármán e Erika Kálmán. "Dispersibility of Carbon Nanotubes". Materials Science Forum 537-538 (febbraio 2007): 161–68. http://dx.doi.org/10.4028/www.scientific.net/msf.537-538.161.
Testo completoJinkins, Katherine, Michael S. Arnold e Sean Foradori. "Aligned Semiconducting Carbon Nanotubes for Commercial Logic and RF Electronics". ECS Meeting Abstracts MA2024-01, n. 15 (9 agosto 2024): 1177. http://dx.doi.org/10.1149/ma2024-01151177mtgabs.
Testo completoTesi sul tema "Nanotubes"
Pach, Elzbieta. "Electron microscopy studies on functional carbon nanotubes". Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/456581.
Testo completoThe present PhD thesis focuses on the thorough study of functional carbon nanotubes by means of electron microscopy techniques. Functional carbon nanotubes (CNTs) are attracting an increased attention due to their potential use for biomedical applications, including in vivo imaging, tumour targeting and drug delivery systems. An intrinsic advantage of carbon nanotubes is that their inner cavity can be filled with a chosen payload whilst the outer surface can be modified to improve their dispersability and biocompatibility. Being the envisaged application in the biomedical field, a detailed characterization of the samples in all the steps of the preparation process (namely purification, shortening, filling and external functionalization) is mandatory. To achieve this goal, in this PhD thesis we have employed already established analysis including high resolution transmission electron microscopy to study the structure of the filling material, or energy dispersive X-ray spectroscopy to assess their composition, but also we have explored the use of other techniques to expand the possibilities of characterization of the samples. In this sense, we have optimized the conditions for the study of the lengths of as-purified single-walled CNTs by surface sensitive high resolution scanning electron microscopy (HRSEM). Besides, low voltage scanning transmission electron microscopy (STEM) has been demonstrated as a time-efficient technique for assessment of filling yield and purity. Indeed, the combination of high spatial resolution and low voltage operation of this technique has made it particularly suitable for the study of the interaction of functional carbon nanotubes with biological samples such as cells. Some of the employed compounds with interest for biomedical applications have a layered structure in their bulk form. Layered materials are known to form monolayers which may exert enhanced or novel properties due to the confinement effects. CNTs may act as templates to guide those layered materials to form single-layered nanotubes. This is the case of lutetium halides and lead iodide. In this PhD thesis we have succeeded in the formation of lutetium halide subnanometer-sized nanotubes, and proved their tubular nature by aberration corrected STEM and image simulations. Additionally, the high yield growth of PbI2 nanotubes on the exterior of CNTs has been achieved. Thanks to aberration corrected HAADF STEM and electron tomography, the structure of the hybrids has been revealed. Remarkably, the optical properties of the hybrids differ from those of the bulk PbI2. The blue shift observed by photoluminescence has been further confirmed by cathodoluminescence STEM analysis detected on individual PbI2-CNT hybrids. In conclusion, during this PhD project the range of electron microscopy techniques used for the study of functional CNTs has been expanded to get a thorough characterisation of the samples.
Brunner, Eric W. "Bioapplications of carbon nanotubes and carbon nanotube assemblies". Thesis, University of Surrey, 2010. http://epubs.surrey.ac.uk/2858/.
Testo completoFifield, Leonard S. "Functional materials based on carbon nanotubes : carbon nanotube actuators and noncovalent carbon nanotube modification /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/11560.
Testo completoPRADHAN, NIHAR R. "Thermal Conductivity of Nanowires, Nanotubes and Polymer-Nanotube Composites". Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-dissertations/112.
Testo completoJayaraman, Karthik. "Solvent behavior in hydrophobic silica nanotubes and nanotube membranes". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3284.
Testo completoThesis research directed by: Dept. of Chemistry and Biochemistry. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Willey, Anthony D. "Thin Films of Carbon Nanotubes and Nanotube/Polymer Composites". BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3540.
Testo completoBahmach, M. V., e D. V. Bychko. "Nanotubes". Thesis, Sumy State University, 2014. http://essuir.sumdu.edu.ua/handle/123456789/45446.
Testo completoEberhardt, Oliver, e Thomas Wallmersperger. "Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies". SPIE, 2015. https://tud.qucosa.de/id/qucosa%3A35032.
Testo completoCastro, Célia. "Mécanismes de croissance de nanotubes de carbone alignés : relation catalyseur-nanotube". Paris 11, 2009. http://www.theses.fr/2009PA112273.
Testo completoThe field of nanoscience which is developing intensively, carbon nanotubes (CNTs) are attracting strong interest because of their particular properties resulting of their special structure. To control and optimize manufacturing processes, it is important to understand the mechanisms governing their growth. Among the synthesis methods of CNTs, the aerosol-assisted CCVD (Catalyst Chemical Vapor Deposition) process, developed in Laboratoire Francis Perrin, allows the continuous and rapid growth of aligned and clean Multi-Walled CNT by the simultaneous injection of liquid carbonaceous precursor (toluene) and catalyst precursor (metallocene). Our main objective was to understand how the chemical transformation of metallocene into catalyst particles, what is the exact nature of catalyst particles, what are the parameters controlling their activity and finally how the catalytic species progress to enable the growth of CNTs. From an experimental approach involving a systematic study of products all along the furnace for different thermodynamic (flow and cooling step) and chemical (concentration of precursors, introduction of reducing gas) conditions, we demonstrate a homogeneous nucleation of particles of iron in the gas phase occurring before the isothermal area followed by their gradual deposition along the furnace. The catalytic particles located at the base of the aligned nanotube carpet are semi-molten iron saturated with carbon that is fed continuously by the catalytic species which diffuse all along the CNT carpet to its base
Choi, Yongho. "Growth, fabrication, and characterization of carbon nanotubes, nanotube films, and nanowires". [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022789.
Testo completoLibri sul tema "Nanotubes"
George, Soney C., Ann Rose Abraham e A. K. Haghi. Carbon Nanotubes. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003277194.
Testo completoDresselhaus, Mildred S., Gene Dresselhaus e Phaedon Avouris, a cura di. Carbon Nanotubes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-39947-x.
Testo completoJorio, Ado, Gene Dresselhaus e Mildred S. Dresselhaus, a cura di. Carbon Nanotubes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72865-8.
Testo completoBalasubramanian, Kannan, e Marko Burghard, a cura di. Carbon Nanotubes. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-579-8.
Testo completoPopov, Valentin N., e Philippe Lambin, a cura di. Carbon Nanotubes. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4574-3.
Testo completoMorinobu, Endo, Iijima Sumio e Dresselhaus M. S, a cura di. Carbon nanotubes. Oxford: Pergamon, 1996.
Cerca il testo completoDaud, Suzairi. Carbon Nanotubes. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4962-5.
Testo completoMonthioux, Marc, a cura di. Carbon Meta-Nanotubes. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119954743.
Testo completoRen, Zhifeng, Yucheng Lan e Yang Wang. Aligned Carbon Nanotubes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30490-3.
Testo completoLoiseau, Annick, Pascale Launois, Pierre Petit, Stephan Roche e Jean-Paul Salvetat, a cura di. Understanding Carbon Nanotubes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/b10971390.
Testo completoCapitoli di libri sul tema "Nanotubes"
Awang, Mokhtar, Ehsan Mohammadpour e Ibrahim Dauda Muhammad. "Nanotubes". In Finite Element Modeling of Nanotube Structures, 1–13. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03197-2_1.
Testo completoDamnjanović, Milan, e Ivanka Milošsević. "Nanotubes". In Line Groups in Physics, 143–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11172-3_9.
Testo completoYoda, Minami, Jean-Luc Garden, Olivier Bourgeois, Aeraj Haque, Aloke Kumar, Hans Deyhle, Simone Hieber et al. "Nanotubes". In Encyclopedia of Nanotechnology, 1877. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100573.
Testo completoLászló, István. "Nanotubes". In New Frontiers in Nanochemistry, 365–69. Includes bibliographical references and indexes. | Contents: Volume 1. Structural nanochemistry – Volume 2. Topological nanochemistry – Volume 3. Sustainable nanochemistry.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429022937-32.
Testo completoGADERMAIER, C., C. MANZONI, A. GAMBETTA, G. CERULLO, G. LANZANI, E. MENNA e M. MENEGHETTI. "INTERSUBBAND EXCITON RELAXATION DYNAMICS IN SINGLEWALLED CARBON NANOTUBES". In Carbon Nanotubes, 171–72. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4574-3_23.
Testo completoGIORDANI, SILVIA, SHANE D. BERGIN, ANNA DRURY, ÉIMHÍN NÍ MHUIRCHEARTAIGH, JONATHAN N. COLEMAN e WERNER J. BLAU. "EFFECT OF SOLVENT AND DISPERSANT ON THE BUNDLE DISSOCIATION OF SINGLE-WALLED CARBON NANOTUBES". In Carbon Nanotubes, 211–12. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4574-3_33.
Testo completoShah, K. A., e M. A. Shah. "Principles of Raman Scattering in Carbon Nanotubes". In Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, 131–45. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5824-0.ch006.
Testo completoWypych, George. "Nanotubes – Nanotubes (generic)". In Databook of Antistatics, 318–35. Elsevier, 2014. http://dx.doi.org/10.1016/b978-1-895198-61-4.50020-1.
Testo completoShankar Kumar, Jay, e Ashok Kumar. "Theoretical Approach of the Propagation of Electromagnetic Waves through Carbon Nanotubes and Behavior of Carbon Nanotubes as Capacitor using Electric Hertz Potential". In Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107767.
Testo completoNayak, Santanu Kumar, Padmaja Patnaik, Dipan Kumar Das, Siddharth Parthasarathy, Niharika Das e Subhraraj Panda. "Crafting Nanotubes From Atoms". In Advances in Chemical and Materials Engineering, 1–32. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-4397-5.ch001.
Testo completoAtti di convegni sul tema "Nanotubes"
Baik, Seunghyun, Byeongsoo Lim, Bumjoon Kim, Untae Sim, Seyoung Oh, Byung-Ho Sung, Jee-Hoon Choi e Chul-Ju Kim. "Characterization of Mechanical Properties of Carbon Nanotubes in Copper-Matrix Nanocomposites". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14224.
Testo completoSun, Xuekun, e Youqi Wang. "Mechanical Properties of Carbon Nanotubes". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39484.
Testo completoLee, Hyung Woo, Soo Hyun Kim, Yoon Keun Kwak e Chang Soo Han. "A New Method for a Single Semi-Conducting Nanotube Device". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61602.
Testo completoZhao, Kuiwen, Zhenyu Liu e Huiying Wu. "Effects of Temperature and Pore Size on Water Diffusion Inside Carbon Nanotubes". In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48725.
Testo completoHuang, Xue Ming Henry, Robert Caldwell, Bhupesh Chandra, Seong Chan Jun, Mingyuan Huang e James Hone. "Controlled Manipulation of Carbon Nanotubes for Nanodevices, Arrays, and Films". In ASME 4th Integrated Nanosystems Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/nano2005-87033.
Testo completoPapadakis, S. J. "Mechanics of nanotubes and nanotube-based devices". In MOLECULAR NANOSTRUCTURES: XVII International Winterschool Euroconference on Electronic Properties of Novel Materials. AIP, 2003. http://dx.doi.org/10.1063/1.1628097.
Testo completoShiomi, Junichiro, Yuan Lin, Carl Fredrik Carlborg, Gustav Amberg e Shigeo Maruyama. "Low Dimensional Heat and Mass Transport in Carbon Nanotubes". In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18541.
Testo completoDickrell, P. L., N. R. Raravikar, S. K. Pal, L. S. Schadler, P. M. Ajayan e W. G. Sawyer. "Frictional and Electrical Properties of Multiwalled Carbon Nanotubes". In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63550.
Testo completoSuhr, Jonghwan, Lijie Ci, Jae-Soon Jang, Victor Pushparaj e Pulickel M. Ajayan. "Continuous Carbon Nanotube-PDMS Composites". In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-521.
Testo completoAskari, Hassan, Ebrahim Esmailzadeh e Davood Younesian. "Nonlinear Forced Vibration of Carbon Nanotubes Considering Thermal Effects". In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34673.
Testo completoRapporti di organizzazioni sul tema "Nanotubes"
Fischer, John, E. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS. Office of Scientific and Technical Information (OSTI), luglio 2009. http://dx.doi.org/10.2172/961519.
Testo completoChatterjee, Tapan, Stacey Kerwien e Elias Jelis. Microstructure Analysis of Boron Nanotubes. Fort Belvoir, VA: Defense Technical Information Center, maggio 2012. http://dx.doi.org/10.21236/ada562019.
Testo completoBrus, Louis E. Metallic Carbon Nanotubes and Ag Nanocrystals. Office of Scientific and Technical Information (OSTI), marzo 2014. http://dx.doi.org/10.2172/1121887.
Testo completoPavia Sanders, Adriana, e Greg O'Bryan. Covalent Surface Modifications of Carbon Nanotubes. Office of Scientific and Technical Information (OSTI), luglio 2017. http://dx.doi.org/10.2172/1373648.
Testo completoWhitaker, Craig, Jay R. Heckert e Ian C. Uber. Synthesis of Amide Functionalized Carbon Nanotubes. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2007. http://dx.doi.org/10.21236/ada519137.
Testo completoHolmes, W., J. Hone, P. L. Richards e A. Zettl. Transmittance of single wall carbon nanotubes. Office of Scientific and Technical Information (OSTI), luglio 2001. http://dx.doi.org/10.2172/841693.
Testo completoGoldhaber-Gordon, David. Manipulating Local Electronic Properties of Carbon Nanotubes. Fort Belvoir, VA: Defense Technical Information Center, luglio 2008. http://dx.doi.org/10.21236/ada486270.
Testo completoRinzler, A. G., J. H. Hafner, P. Nilolaev, D. T. Colbert e R. E. Smalley. Field emission and growth of fullerene nanotubes. Office of Scientific and Technical Information (OSTI), novembre 1994. http://dx.doi.org/10.2172/650265.
Testo completoKrauss, Todd. Directing Photogenerated Charges Along Individual Carbon Nanotubes. Office of Scientific and Technical Information (OSTI), novembre 2020. http://dx.doi.org/10.2172/1706703.
Testo completoResasco, Daniel E. Center for Applications of Single-Walled Carbon Nanotubes. Office of Scientific and Technical Information (OSTI), febbraio 2008. http://dx.doi.org/10.2172/924034.
Testo completo