Indice
Letteratura scientifica selezionata sul tema "Nanofibres optiques"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Nanofibres optiques".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Tesi sul tema "Nanofibres optiques"
Bouhadida, Maha. "Étude d’effets optiques non linéaires d’ordres 2 et 3 dans des nanofibres optiques". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASP019.
Testo completoIn this PhD thesis we study 2nd and 3rd order optical non-linearities in optical nanofibers, which are obtained by stretching standard fibers until their diameter becomes of the order of magnitude of the wavelength. The first application is the realization of wavelength converters in the visible range in the sub-ns regime, range which is only minimally covered by pulsed sources. The principle of these converters is to use stimulated Raman scattering in the evanescent field immersed in a liquid. By defining and optimizing their operating range, we have reach external conversion efficiencies from the pump at 532 nm to the first Stokes order of ethanol at 630 nm near to 60%. The performances of our converters are very repeatable and open the way to a new family of very compact, reliable and all-fibered components.The second application is the study of a source of correlated photon pairs for quantum telecommunications. Our source is based of parametric fluorescence on the surface of a silica nanofiber. In the phase-matching we propose, the pump wave is emitted on the mode TM01 at 775 nm and the photon pairs are emitted around1.5 μm in the fundamental mode, enabling a recoupling with only a few losses in the optical network. Our study mainly concern the choice of the standard fiber enabling to optimize the efficiency of the mechanism, the conception of the nanofiber and its tapers as well as the implementation of preliminary experiments for the excitation of high ordrer modes
Azzoune, Abderrahim. "Nanofibres optiques pour la réalisation de sources de photons corrélés". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO009.
Testo completoSources of correlated photon pairs are key components required for quantum telecommunications networks. Implementing these sources directly with optical fibers minimizes the insertion losses. We propose to design such a source from a tapered optical fiber.The tapered fiber has a diameter lower than 500 nm over a length of a few centimeters. The small diameter of the tapered section favors the non-linear effects, while the unstretched sections make it possible to connect this tapered fiber with the fibers of the telecommunication networks with very low losses.In this thesis, we present a design of a new source, fully fibered of correlated photons based on standard telecommunications tapered fibers (SMF28). To produce these pairs of photons we will use the parametric fluorescence due to symmetry breaking at the surface of a silica nanofiber.We have developed an optical microscopy measurement technique to measure all the profile of tapered fibers with nanometer resolution far beyond the diffraction limit.In parallel, we modeled the second-order nonlinear surface susceptibility by taking into account the vector aspect of the propagation of the optical field in a two or three-layered microfiber. In a second step, we define modal phase matchings that are necessary to obtain a strong parametric fluorescence. We size this nanofiber for a good optimization of pairs generation efficiency. The entire process of photon creation will be modeled
Zerbib, Maxime. "Interactions Brillouin et opto-acoustiques dans les nanofibres optiques". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCD062.
Testo completoOpto-acoustic interactions are physical phenomena at the interface between the fields of optics and acoustics. This thesis focuses on a theoretical and experimental investigation of Brillouin scattering opto-acoustic effects in silica optical nanofibers. Due to their transverse dimensions being smaller than optical wavelengths, these waveguides exhibit unique properties, paving the way for applications in sensing, signal processing, and quantum information. In this manuscript, we present a new high-transmission optical nanofiber fabrication model based on an approach that enhances design flexibility for waveguides. This advancement allows for the custom design of waveguides to favor specific opto-acoustic effects, such as intermodal or stimulated Brillouin scattering. For the first time, the Brillouin spectrum characterization of nanofibers is conducted in the stimulated scattering regime, highlighting a strong interaction efficiency across different acoustic resonances. The intrinsic Brillouin gain in a nanofiber has been measured to be up to 40 times higher than that of a standard SMF-28 fiber, enabling the demonstration of a Brillouin laser effect in the nanofiber. A theoretical and experimental investigation of opto-acoustic spin-orbit interaction via Brillouin scattering in an optical nanofiber is also carried out. The phenomenon is a direct consequence of the fundamental principle of angular momentum conservation, which involves an exchange between the spin degree of the incident light, embodied by its polarization, the orbital angular momentum carried by the TR21 acoustic vortex, and the spin of the scattered light. Finally, we implement a polarization-sensitive Brillouin opto-acoustic memory in a nanofiber, opening the way to storing information on the polarization state of light within an acoustic wave
Pierini, Stefano. "Experimental Study of Perovskite Nanocrystals as Single Photon Sources for Integrated Quantum Photonics". Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0009.
Testo completoThis thesis is devoted to the study of the coupling of single-photon emitters with photonic nanostructures by using the properties of the near field of a photonic structure in view of the realization of a compact integrated single-photon source for quantum applications. The first part of my thesis work was consecrated to the optimization of perovskites nanocrystals. Although perovskites nanocrystals are very promising single-photon sources, they still need improvements: in this work, I review the main properties of these emitters and present a full characterization of perovskite nanocrystals with improved photo-stability, reduced blinking ad strong antibunching. In the second part of the thesis, I focus on the coupling of quantum emitters with various photonic structures: namely the tapered optical nanofibers and the ion-exchange waveguides. The fabrication method and the optical properties of the nanofibers are described in detail and the coupling of a single perovskite nanocrystal with a nanofiber is achieved, which constitutes a proof of principle of a hybrid integrated single-photon source. Finally, I show how the near field around ion Exchange waveguides can be employed together with near-field polymerizations to trap single-photon emitters onto the waveguides
Joos, Maxime. "Dispositifs hybrides : nanoparticules couplées à une nanofibre optique". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS153.
Testo completoIn this thesis, we present an experimental study of hybrid systems where nano-emitters are coupled to optical nanofibers. The strong transverse confinement of light in sub-wavelength fibres implies an “exotic” electric field (longitudinal electric field component, inhomogeneous polarisation etc.) that we use in order to alter the radiation properties of nano-emitter placed at the surface of the nanofiber. Based on the same system : nano-particle + nanofibre, we developped an “optical ruler” to localise the nanofiber with nanometer precision. This open the way to the study of nanofibre optomechanics
Chandra, Aveek. "Coupling 1D atom arrays to an optical nanofiber : Demonstration of an efficient Bragg atomic mirror". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066582/document.
Testo completoThe coupling of cold atoms to 1D nanoscale waveguides have opened new avenues of research. The waveguide in our case is a nanofiber, which confines light transversally to a subwavelength scale. The guided light exhibits a strong evanescent field allowing enhanced atom-photon interaction in the vicinity of nanofiber. In our experiment, a cold atomic cloud is first interfaced with an optical nanofiber. By using an optical lattice in the evanescent field, the atoms are then trapped in 1D atomic arrays close to the nanofiber. In this platform, we reach high optical depth OD ~ 100 and long lifetimes ~ 25 ms by using a dual-color compensated trapping scheme that preserves the internal properties of atoms. In this thesis, we explore collective effects emerging from the spatial ordering of atoms. When the period of the lattice is made close to commensurate with the resonant wavelength, Bragg reflection, as high as 75%, is observed. The reflection shows dependency on orientation of the probe polarization relative to the atomic arrays - a chiral signature in nanoscale waveguide-QED systems. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum networking capabilities and the study of many-body effects arising from long-range interactions
Shan, Liye. "Stimulated Raman scattering in the evanescent field of nanofibers". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112421/document.
Testo completoThe present PhD thesis explored nonlinear wave mixing with the strong evanescent field of nanofibers. The focus has been on the effect of stimulated Raman scattering which is activated by the interaction between such a strong evanescent field and the nonlinear liquid surrounding the nanofiber. In order to observe the stimulated Raman scattering, we investigated the nonlinear modeling to determine the needed characteristics of the nanofibers. The modal Raman gain was calculated to determine the optimal radius of nanofibers for each possible liquid. Considering the critical power and the damage threshold of our nanofibers, we found the minimum required interaction length. The condition of adiabacity of the tapers was also described. These specifications of nanofibers guide us towards the design of a proper pulling system. Several pulling systems and techniques are investigated for the fabrication of our specific nanofibers. We now are able to fabricate low loss uniform nanofibers of up to 10 cm long, a diameter down to 200 nm, with two identical low loss tapers by using our own designed translation stage pulling platform and implemented with the “variable heat brush” technique. With the achieved nanofibers, the Raman effect induced in the evanescent field was observed in both pure (ethanol) and binary mixture (toluene in ethanol) liquids. These first measurements are in good agreement with our simulation even without any fitting parameters in the modeling
Gouraud, Baptiste. "Optical nanofibers interfacing cold toms. A tool for quantum optics". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066026/document.
Testo completoWe built a new experiment using cold atoms interacting with the light guided by an optical nanofiber. We first developed a nanofiber manufacturing bench. By heating and stretching a commercial optical fiber, a silica cylinder of 400 nm diameter is obtained. The light guided in these nanofibers is strongly focused over the whole length and exhibits strong evanescent fields. We then prepared a vacuum chamber and the laser system necessary for the manipulation of cold atoms. After inserting a nanofiber amid a cloud of cold atoms, we observed the phenomenon of slow light under the conditions of electromagnetically induced transparency: the light guided by the fiber is slowed down to a speed 3000 times smaller than its usual speed. We also stored the light guided by an optical fiber. After several microseconds, the information stored as a collective atomic excitation could be retrieved in the fiber. We have shown that this optical memory works for light pulses containing less than one photon on average. This system may therefore be used as a quantum memory, an essential tool for future quantum communication networks. Finally, we trapped atoms in an array in the vicinity of the nanofiber thanks to the light guided by the latter. Compared to our first set of experiments, the resulting cloud has a longer lifetime (25 ms) and interacts more strongly with the guided light (OD ~ 100). This new system should allow to efficiently implement other quantum optics protocols, such as the generation of single photons, or the entanglement of two remote atomic ensembles
Raskop, Jérémy. "Quantum optics with single collective excitations of nanofiber-trapped arrays of atoms". Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS005.
Testo completoThis thesis focuses on the study of interactions between photons guided by an optical nanofiber and arrays of trapped atoms. Our experimental setup consists in a two-color compensated dipole trap located in the evanescent field of an optical nanofiber in a ultra-high vacuum chamber. Cold cesium atoms are trapped in two 1D arrays above and below the nanofiber. An optical depth of over 130 is achieved with only a few thousand atoms. We demonstrate the ability to prepare the trapped atoms in a single Zeeman sub-level, albeit with limited efficiency. This is an important step towards the realization of a long-lived quantum memory with our fibered platform. The main result of this thesis concerns the initialization of a single collective excitation coupled to the nano-waveguide. The excitation is heralded by the detection of a Raman scattered photon in the nanofiber. We are then able to readout the atomic state and retrieve a single photon in the guided mode with an efficiency of up to 25%. This result is the first demonstration of an atomic entangled state preferentially coupled to a waveguide. It is a milestone in the context of the emerging waveguide-QED approach, with applications to quantum networking, quantum non-linear optics and quantum many-body physics
Massuyeau, Florian. "Etudes Photophysiques d'un polymère conjugué nanostructuré : du film nanocomposite à la nanofibre". Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00429799.
Testo completo