Articoli di riviste sul tema "Nanoelectronics"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Nanoelectronics.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Nanoelectronics".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

HULL, ROBERT, RICHARD MARTEL e J. M. XU. "NANOELECTRONICS: SOME CURRENT ASPECTS AND PROSPECTS". International Journal of High Speed Electronics and Systems 12, n. 02 (giugno 2002): 353–64. http://dx.doi.org/10.1142/s0129156402001174.

Testo completo
Abstract (sommario):
A brief summary is provided of selected current activities in the field of nanoelectronics, which is taken here to mean the fabrication and integration of active microelectronic components with feature dimensions of tens of nanometers or less. Particular emphasis is placed upon the classes of nanoelectronic devices that were discussed at the 2002 WOFE Conference.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

He, Qianxi. "Characteristics and Improvement Methods of Carbon Nanodevices". Highlights in Science, Engineering and Technology 106 (16 luglio 2024): 94–100. http://dx.doi.org/10.54097/8s3ra054.

Testo completo
Abstract (sommario):
Whether the trend of increasing integration density of integrated circuits indicated by Moore's Law can continue to develop, especially now that feature sizes have entered the nanometer range, shrinking sizes face greater challenges. Since entering the "post-Moore" era, the development of carbon-based nanoelectronics has attracted attention. This paper explores the application of carbon-based nanomaterials in carbon-based nanoelectronic devices and integrated circuits. It introduces the structure, properties, and preparation methods of single-walled carbon nanotubes and graphene, demonstrating their importance to carbon-based nanoelectronic devices and integrated circuits. The synthesis methods of carbon nanotubes mainly include arc discharge method, laser ablation method, and chemical vapor deposition metho. Subsequently, it summarizes the advantages, applications, and challenges of carbon-based nanoelectronic devices. The applications of carbon-based nanoelectronic devices and integrated circuits include digital integrated circuits, optoelectronic integrated circuits, electrochemical sensors, carbon-based radio frequency devices, and smart integrated systems. Furthermore, starting from the preparation methods, improvement methods are summarized, focusing on chemical vapor deposition, to optimize carbon nanomaterials for application in carbon nanodevices. It elucidates the promising prospects of carbon-based nanoelectronics.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bate, R. T. "Nanoelectronics". Nanotechnology 1, n. 1 (1 luglio 1990): 1–7. http://dx.doi.org/10.1088/0957-4484/1/1/001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hartnagel, H. L., R. Richter e A. Grüb. "Nanoelectronics". Electronics & Communications Engineering Journal 3, n. 3 (1991): 119. http://dx.doi.org/10.1049/ecej:19910020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Cress, Cory. "Carbon Nanoelectronics". Electronics 3, n. 1 (27 gennaio 2014): 22–25. http://dx.doi.org/10.3390/electronics3010022.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bandyopadhyay, S., e V. P. Roychowdhury. "Granular nanoelectronics". IEEE Potentials 15, n. 2 (1996): 8–11. http://dx.doi.org/10.1109/45.489730.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Wolfgang, Porod, e I. Csurgay Arpad. "Editorial: Nanoelectronics". IEE Proceedings - Circuits, Devices and Systems 151, n. 5 (2004): 413. http://dx.doi.org/10.1049/ip-cds:20041170.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Vuill, Dominique. "Molecular Nanoelectronics". Proceedings of the IEEE 98, n. 12 (dicembre 2010): 2111–23. http://dx.doi.org/10.1109/jproc.2010.2063410.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Nyberg, Tobias, Fengling Zhang e Olle Inganäs. "Macromolecular nanoelectronics". Current Applied Physics 2, n. 1 (febbraio 2002): 27–31. http://dx.doi.org/10.1016/s1567-1739(01)00104-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Gorbatsevich, A. A., e V. V. Kapaev. "Waveguide nanoelectronics". Russian Microelectronics 36, n. 1 (febbraio 2007): 1–13. http://dx.doi.org/10.1134/s1063739707010015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Sato, Shintaro. "Graphene for nanoelectronics". Japanese Journal of Applied Physics 54, n. 4 (25 febbraio 2015): 040102. http://dx.doi.org/10.7567/jjap.54.040102.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Khaderbad, Mrunal, Soumyo Mukherji e Ramgopal Rao. "DNA Based Nanoelectronics". Recent Patents on Electrical Engineeringe 1, n. 2 (1 giugno 2008): 115–20. http://dx.doi.org/10.2174/1874476110801020115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Vallett, Dave. "Nanoelectronics Failure Analysis". EDFA Technical Articles 5, n. 2 (1 maggio 2003): 5–9. http://dx.doi.org/10.31399/asm.edfa.2003-2.p005.

Testo completo
Abstract (sommario):
Abstract This article discusses the emergence of nanoelectronics and the effect it may have on semiconductor testing and failure analysis. It describes the different types of quantum effect and molecular electronic devices that have been produced, explaining how they are made, how they work, and the changes that may be required to manufacture and test these devices at scale.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

N. O. Sadiku, Matthew, Yogita P. Akhare e Sarhan M. Musa. "Nanoelectronics: A Primer". International Journal of Advances in Scientific Research and Engineering 5, n. 5 (2019): 257–59. http://dx.doi.org/10.31695/ijasre.2019.33215.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Catalan, G., J. Seidel, R. Ramesh e J. F. Scott. "Domain wall nanoelectronics". Reviews of Modern Physics 84, n. 1 (3 febbraio 2012): 119–56. http://dx.doi.org/10.1103/revmodphys.84.119.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Compañó, Ramón. "Trends in nanoelectronics*". Nanotechnology 12, n. 2 (25 maggio 2001): 85–88. http://dx.doi.org/10.1088/0957-4484/12/2/301.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Tsu, Raphael. "Challenges in nanoelectronics". Nanotechnology 12, n. 4 (28 novembre 2001): 625–28. http://dx.doi.org/10.1088/0957-4484/12/4/351.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Telford, Mark. "Nanoelectronics centers founded". Nano Today 1, n. 1 (febbraio 2006): 16. http://dx.doi.org/10.1016/s1748-0132(06)70016-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Sealy, Cordelia. "Roadmap for nanoelectronics". Materials Today 7, n. 9 (settembre 2004): 18. http://dx.doi.org/10.1016/s1369-7021(04)00397-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Rohrer, H. "Nanoengineering beyond nanoelectronics". Microelectronic Engineering 41-42 (marzo 1998): 31–36. http://dx.doi.org/10.1016/s0167-9317(98)00008-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Lieber, Charles. "Nanoelectronics Meets Biology". Biophysical Journal 100, n. 3 (febbraio 2011): 189a. http://dx.doi.org/10.1016/j.bpj.2010.12.1247.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Cerofolini, G. F., G. Arena, M. Camalleri, C. Galati, S. Reina, L. Renna, D. Mascolo e V. Nosik. "Strategies for nanoelectronics". Microelectronic Engineering 81, n. 2-4 (agosto 2005): 405–19. http://dx.doi.org/10.1016/j.mee.2005.03.041.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Hoenlein, Wolfgang, Georg S. Duesberg, Andrew P. Graham, Franz Kreupl, Maik Liebau, Werner Pamler, Robert Seidel e Eugen Unger. "Nanoelectronics beyond silicon". Microelectronic Engineering 83, n. 4-9 (aprile 2006): 619–23. http://dx.doi.org/10.1016/j.mee.2005.12.018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Ferry, D. K. "Nanowires in Nanoelectronics". Science 319, n. 5863 (1 febbraio 2008): 579–80. http://dx.doi.org/10.1126/science.1154446.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Beaumont, Steven P. "III–V Nanoelectronics". Microelectronic Engineering 32, n. 1-4 (settembre 1996): 283–95. http://dx.doi.org/10.1016/0167-9317(95)00367-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Kern, Klaus, e Joachim Maier. "Nanoionics and Nanoelectronics". Advanced Materials 21, n. 25-26 (24 giugno 2009): 2569. http://dx.doi.org/10.1002/adma.200901896.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Homberger, Melanie, e Ulrich Simon. "On the application potential of gold nanoparticles in nanoelectronics and biomedicine". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, n. 1915 (28 marzo 2010): 1405–53. http://dx.doi.org/10.1098/rsta.2009.0275.

Testo completo
Abstract (sommario):
Ligand-stabilized gold nanoparticles (AuNPs) are of high interest to research dedicated to future technologies such as nanoelectronics or biomedical applications. This research interest arises from the unique size-dependent properties such as surface plasmon resonance or Coulomb charging effects. It is shown here how the unique properties of individual AuNPs and AuNP assemblies can be used to create new functional materials for applications in a technical or biological environment. While the term technical environment focuses on the potential use of AuNPs as subunits in nanoelectronic devices, the term biological environment addresses issues of toxicity and novel concepts of controlling biomolecular reactions on the surface of AuNPs.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Mishra, Manoj, e Shil Ja. "Germanium Nanowires (GeNW): Synthesis, Structural Properties, and Electrical Characterization for Advanced Nanoelectronic Devices". Migration Letters 20, S13 (20 dicembre 2023): 236–45. http://dx.doi.org/10.59670/ml.v20is13.6289.

Testo completo
Abstract (sommario):
The exponential progress of nanoelectronic devices necessitates the development of novel materials and production methodologies to fulfill the escalating demands for enhanced performance. This research aims to answer the current need for high-performance materials by proposing a revolutionary approach known as Germanium Nanowires for Advanced Nanoelectronic Devices (GeNW-ANED). GeNW-ANED achieves the integration of GeNW growth with advanced nanoelectronic applications. The system has several distinctive attributes, such as meticulous regulation of nanowire fabrication, adjustable electrical characteristics, and improved thermal qualities. The GeNW-ANED method exhibits exceptional performance across multiple experimental metrics, encompassing Electrical Conductivity (1.70 S/cm), Carrier Mobility (1685.83 cm²/Vs), Dielectric Constant (4.73), Specific Capacity (325.00 mAh/g), Growth Rate (5.93 nm/s), and Thermal Conductivity (3.47 W/mK). The impressive results achieved by GeNW-ANED establish it as a prospective contender for advanced nanoelectronic devices, offering the potential for improved performance and increased adaptability. The presented approach exhibits promise in influencing the trajectory of nanoelectronics, as it provides a sturdy basis for advancing the creation of forthcoming devices that possess enhanced electrical, thermal, and energy storage properties.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

OYUBU, OYUBU AKPOVI, e OKPEKI UFUOMA KAZEEM. "AN OVERVIEW OF NANOELECTRONICS AND NANODEVICES". Journal of Engineering Studies and Research 26, n. 3 (27 luglio 2020): 165–72. http://dx.doi.org/10.29081/jesr.v26i3.220.

Testo completo
Abstract (sommario):
Nanoelectronics is a nascent area of making electronic devices at the atomic scale to utilize small-scale 'quantum' characteristics of nature. As the name suggests, Nanoelectronics refers to employing nanotechnology in building electronic devices/components; especially transistors. Thus, transistor devices which are so small such that inter-atomic cooperation and quantum mechanical characteristics cannot be ignored are known as Nanoelectronics. This article presents Nanoelectronics and Nanodevices, which are the critical enablers that will not only enable mankind to exploit the ultimate technological capabilities of electronic, mechanical, magnetic, and biological systems but also have the potential to play a part in transforming of the systems thus giving rise to new trends that will revolutionize our life style.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Schrecongost, Dustin, Hai-Tian Zhang, Roman Engel-Herbert e Cheng Cen. "Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures". Applied Physics Letters 120, n. 8 (21 febbraio 2022): 081602. http://dx.doi.org/10.1063/5.0083771.

Testo completo
Abstract (sommario):
It was demonstrated recently that the nano-optical and nanoelectronic properties of VO2 can be spatially programmed through the local injection of oxygen vacancies by atomic force microscope writing. In this work, we study the dynamic evolution of the patterned domain structures as a function of the oxygen vacancy concentration and the time. A threshold doping level is identified that is critical for both the metal–insulator transition and the defect stabilization. The diffusion of oxygen vacancies in the monoclinic phase is also characterized, which is directly responsible for the short lifetimes of sub-100 nm domain structures. This information is imperative for the development of oxide nanoelectronics through defect manipulations.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Zhuravleva, L. M., Y. A. Nikulina e A. C. Lebedeva. "PROSPECTS OF GRAPHENE NANOELECTRONICS". World of Transport and Transportation 14, n. 1 (28 febbraio 2016): 72–78. http://dx.doi.org/10.30932/1992-3252-2016-14-1-8.

Testo completo
Abstract (sommario):
[For the English abstract and full text of the article please see the attached PDF-File (English version follows Russian version)].ABSTRACT The article with regard to transport developments deals with topical issues of improving electronics engineering and of transition to new technological structures associated with nanotechnology. It is noted that the main direction of evolution of nanoelectronics is linked to new electronics components based on new materials like graphene. Possibility and prospect of replacing traditional and most used silicon materials with graphene are reviewed. Brief information about methods of manufacturing, benefits and advantages of the use of graphene is followed by the arguments in favor of development of technique capable to open the band gap, allowing transition of graphene into semiconductor. Methods of mass commercial manufacturing of graphene semiconductor are discussed. Keywords: transport, science, functional material, graphene, graphite, electronics, nanoelectronics, nanotechnology. REFERENCES 1.Graphene.[Electronic source]: https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D1%84%D0%B 5%D0%BD.Last accessed 27.11.2015. 2.Poverennaya, M.Graphene boom.Results [Grafenovyj bum: itogi].Nanotehnologicheskoe soobshhestvo, Iss.October 26,2012.[Electronic source]: http://www.nanometer.ru/2012/10/26/13512365078102_298275.html.Last accessed 27.11.2015. 3.Nobel Prize in physics was awarded for creation of graphene [Za sozdanie grafena prisuzhdena Nobelevskaja premija v oblasti fizike].[Electronic source]: http://venture-biz.ru/tekhnologii-innovatsii/93-grafen-nobelevskaya-premiya.Last accessed 27.11.2015. 4.Zhuravleva, L.M., Plekhanov, V. G.Isotopic creation of semiconductor graphene [Izotopicheskoe sozdanie poluprovodnikovogo grafena].Nanotehnika, 2012, Iss.3, pp.34-39. 5.Graphene.Physics [Grafen. Fizika].[Electronic source]: http://4108.ru/u/grafen_-_fizika.Last accessed 27.11.2015. 6.Yudintsev, V.Graphene.Nanoelectronics is rapidly gaining strength [Grafen. Nanoelektronika stremitel’no nabiraet sily].Elektronika, nauka, tehnologija, biznes, 2009, Iss.6.[Electronic source]: http://www.electronics.ru/ journal/article/269.Last accessed 27.11.2015. 7.Samardak, Alexander.Graphene, new methods of synthesis and the latest advances [Grafen: novye metody poluchenija i poslednie dostizhenija].Elementy.Iss.30.09.2008.[Electronic source]: http://elementy.ru/ novosti_nauki/430857/Grafen_novye_metody_ polucheniya_i_poslednie_dostizheniya.Last accessed 27.11.2015. 8.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A. A.Electric Field Effect in Atomically Thin Carbon Films.Science, V. 306, 22 October 2004, pp.666-669. 9.Bekyarova, E., Itkis, M.E., Cabrera, N., Zhao, B., Yu, A., Gao, J., Haddon R. C.Electronic Properties of Single-walled Carbon Nanotube Networks.Journal of American Chemical Society, 2005, Vol.127, No.16, pp.5990-5995. 10.Palnitkar, U.A., Kashid, R.V., More, M.A., Joag, D.S., Panchakarla, L.S., Rao, C.N.R.Remarkably Low Turn-on Field Emission in Undoped, Nitrogen-doped, and Boron-doped Graphene.Applied Physics Letters, 2010, Vol.97, No.6, pp.063102-063102. 11.Chernozatonsky, L.A., Sorokin, P.B., Belova, E.E., Bruening, J., Fedorov, A. S.Superlattices consisting of «lines» of adsorbed hydrogen atom pairs on graphene [Sverhreshetki, sostojashhie iz «linij» adsorbirovannyh par atomov vodoroda na grafene].Pis’ma v ZhETF, 2007, Vol.85, Iss.1, pp.84-89. 12.Novoselov, K. S.Graphene: Materials of Flatland [Grafen: Materialy Flatlandii].UFN, 2011, Vol.181, pp.1299-1311. 13.McCann E., Koshino M.The Electronic Properties of Bilayer Graphene // Reports on Progress in Physics, 2013, Vol.76, No.5, pp.056503(28). 14.Chernozatonsky, L.A., Sorokin, P.B., Belova, E.E., Bruening, J., Fedorov, A. S.Superlattices metal - semiconductor (semimetal) on a graphite sheet with vacancies [Sverhreshetki metall - poluprovodnik (polumetall) na grafitovom liste s vakansijami].Pis’ma v ZhETF, 2006, Vol.84, Iss.3, pp.141-145.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Alshareef, H. N., M. A. Quevedo-Lopez e P. Majhi. "Contact materials for nanoelectronics". MRS Bulletin 36, n. 2 (febbraio 2011): 90–94. http://dx.doi.org/10.1557/mrs.2011.9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Dresselhaus, Mildred. "Carbon connections promise nanoelectronics". Physics World 9, n. 5 (maggio 1996): 18–19. http://dx.doi.org/10.1088/2058-7058/9/5/18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Parpura, Vladimir. "Nanoelectronics for the heart". Nature Nanotechnology 11, n. 9 (27 giugno 2016): 738–39. http://dx.doi.org/10.1038/nnano.2016.123.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Zheng, Gengfeng. "Nanoelectronics Aiming at Cancer". Clinical Chemistry 61, n. 4 (1 aprile 2015): 664–65. http://dx.doi.org/10.1373/clinchem.2014.237453.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Russer, Peter, Nikolaus Fichtner, Paolo Lugli, Wolfgang Porod, Johannes A. Russer e Hristomir Yordanov. "Nanoelectronics-Based Integrate Antennas". IEEE Microwave Magazine 11, n. 7 (dicembre 2010): 58–71. http://dx.doi.org/10.1109/mmm.2010.938570.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Gimzewski, James. "Molecules, nanophysics and nanoelectronics". Physics World 11, n. 6 (giugno 1998): 29–34. http://dx.doi.org/10.1088/2058-7058/11/6/25.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Alexe, Marin. "Nanoelectronics needs new materials". Physics World 12, n. 1 (gennaio 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/1/22.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Cosby, Ronald M., Dustin R. Humm e Yong S. Joe. "Nanoelectronics using conductance quantization". Journal of Applied Physics 83, n. 7 (aprile 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Dubourdieu, C., I. Gelard, O. Salicio, G. Saint Girons, B. Vilquin e G. Hollinger. "Oxides heterostructures for nanoelectronics". International Journal of Nanotechnology 7, n. 4/5/6/7/8 (2010): 320. http://dx.doi.org/10.1504/ijnt.2010.031723.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Gargini, Paolo A. "Silicon Nanoelectronics and Beyond". Journal of Nanoparticle Research 6, n. 1 (febbraio 2004): 11–26. http://dx.doi.org/10.1023/b:nano.0000023248.65742.6c.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

WONG, H. S. PHILIP. "NANOELECTRONICS – OPPORTUNITIES AND CHALLENGES". International Journal of High Speed Electronics and Systems 16, n. 01 (marzo 2006): 83–94. http://dx.doi.org/10.1142/s0129156406003540.

Testo completo
Abstract (sommario):
As device sizes approach the nanoscale, new opportunities arise from harnessing the physical and chemical properties at the nanoscale. It is now feasible to contemplate new nanoelectronic systems based on new devices with completely new system architectures. This paper will give an overview of the materials, technology, and device opportunities in the nanoscale era. So far, much of the nanoscale sciences have been researched in the physics, chemistry, and materials science communities. While there have been plenty of good science in the nano world, nanotechnology is still at its infancy. The engineering community is poised to make a major impact in transforming good nanoscience into useful nanotechnology. The disciplined performance benchmarking against alternatives as practiced by the engineering community will prove to be invaluable to the development of new nanotechnologies. Examples of such performance benchmarking exercises will be shown and directions for future work will be suggested.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Freitag, Marcus. "Nanoelectronics goes flat out". Nature Nanotechnology 3, n. 8 (agosto 2008): 455–57. http://dx.doi.org/10.1038/nnano.2008.219.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Mertens, Paul. "Accoustic cleaning in nanoelectronics". Journal of the Acoustical Society of America 123, n. 5 (maggio 2008): 3045. http://dx.doi.org/10.1121/1.2932736.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Arefeva, P. A., e R. A. Brazhe. "Supracrystalline nanoribbons for nanoelectronics". Journal of Physics: Conference Series 345 (9 febbraio 2012): 012004. http://dx.doi.org/10.1088/1742-6596/345/1/012004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Fang, Yan, Junfeng Hou e Ying Fang. "Flexible bio-interfaced nanoelectronics". Journal of Materials Chemistry C 2, n. 7 (2014): 1178. http://dx.doi.org/10.1039/c3tc32322f.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Kosiel, Kamil. "MBE—Technology for nanoelectronics". Vacuum 82, n. 10 (giugno 2008): 951–55. http://dx.doi.org/10.1016/j.vacuum.2008.01.033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Žutić, Igor, Alex Matos-Abiague, Benedikt Scharf, Tong Zhou, Hanan Dery e Kirill Belashchenko. "Nanoelectronics with proximitized materials". Solid-State Electronics 155 (maggio 2019): 93–98. http://dx.doi.org/10.1016/j.sse.2019.03.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Palumbo, Gaetano. "Silicon Nanoelectronics - [Book Review]". IEEE Circuits and Devices Magazine 22, n. 5 (settembre 2006): 59. http://dx.doi.org/10.1109/mcd.2006.273010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Soldatov, E. S., S. P. Gubin, I. A. Maximov, G. B. Khomutov, V. V. Kolesov, A. N. Sergeev-Cherenkov, V. V. Shorokhov, K. S. Sulaimankulov e D. B. Suyatin. "Molecular cluster based nanoelectronics". Microelectronic Engineering 69, n. 2-4 (settembre 2003): 536–48. http://dx.doi.org/10.1016/s0167-9317(03)00344-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia