Letteratura scientifica selezionata sul tema "Multivariate stationary process"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Multivariate stationary process".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Multivariate stationary process"
MBEKE, Kévin Stanislas, e Ouagnina Hili. "Estimation of a stationary multivariate ARFIMA process". Afrika Statistika 13, n. 3 (1 ottobre 2018): 1717–32. http://dx.doi.org/10.16929/as/1717.130.
Testo completoCheng, R., e M. Pourahmadi. "The mixing rate of a stationary multivariate process". Journal of Theoretical Probability 6, n. 3 (luglio 1993): 603–17. http://dx.doi.org/10.1007/bf01066720.
Testo completoLatour, Alain. "The Multivariate Ginar(p) Process". Advances in Applied Probability 29, n. 1 (marzo 1997): 228–48. http://dx.doi.org/10.2307/1427868.
Testo completoLatour, Alain. "The Multivariate Ginar(p) Process". Advances in Applied Probability 29, n. 01 (marzo 1997): 228–48. http://dx.doi.org/10.1017/s0001867800027865.
Testo completoSun, Ying, Ning Su e Yue Wu. "Multivariate stationary non-Gaussian process simulation for wind pressure fields". Earthquake Engineering and Engineering Vibration 15, n. 4 (18 novembre 2016): 729–42. http://dx.doi.org/10.1007/s11803-016-0361-x.
Testo completoBorovkov, K., e G. Last. "On Rice's Formula for Stationary Multivariate Piecewise Smooth Processes". Journal of Applied Probability 49, n. 02 (giugno 2012): 351–63. http://dx.doi.org/10.1017/s002190020000913x.
Testo completoZhang, Zhengjun, e Richard L. Smith. "The behavior of multivariate maxima of moving maxima processes". Journal of Applied Probability 41, n. 4 (dicembre 2004): 1113–23. http://dx.doi.org/10.1239/jap/1101840556.
Testo completoZhang, Zhengjun, e Richard L. Smith. "The behavior of multivariate maxima of moving maxima processes". Journal of Applied Probability 41, n. 04 (dicembre 2004): 1113–23. http://dx.doi.org/10.1017/s0021900200020878.
Testo completoBorovkov, K., e G. Last. "On Rice's Formula for Stationary Multivariate Piecewise Smooth Processes". Journal of Applied Probability 49, n. 2 (giugno 2012): 351–63. http://dx.doi.org/10.1239/jap/1339878791.
Testo completoGordy, Michael B. "Finite-Dimensional Distributions of a Square-Root Diffusion". Journal of Applied Probability 51, n. 4 (dicembre 2014): 930–42. http://dx.doi.org/10.1239/jap/1421763319.
Testo completoTesi sul tema "Multivariate stationary process"
Biron, Matthieu Etienne. "Prediction and estimation for multivariate stationary time series models". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341888.
Testo completoBoulin, Alexis. "Partitionnement des variables de séries temporelles multivariées selon la dépendance de leurs extrêmes". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5039.
Testo completoIn a wide range of applications, from climate science to finance, extreme events with a non-negligible probability can occur, leading to disastrous consequences. Extremes in climatic events such as wind, temperature, and precipitation can profoundly impact humans and ecosystems, resulting in events like floods, landslides, or heatwaves. When the focus is on studying variables measured over time at numerous specific locations, such as the previously mentioned variables, partitioning these variables becomes essential to summarize and visualize spatial trends, which is crucial in the study of extreme events. This thesis explores several models and methods for partitioning the variables of a multivariate stationary process, focusing on extreme dependencies.Chapter 1 introduces the concepts of modeling dependence through copulas, which are fundamental for extreme dependence. The notion of regular variation, essential for studying extremes, is introduced, and weakly dependent processes are discussed. Partitioning is examined through the paradigms of separation-proximity and model-based clustering. Non-asymptotic analysis is also addressed to evaluate our methods in fixed dimensions.Chapter 2 study the dependence between maximum values is crucial for risk analysis. Using the extreme value copula function and the madogram, this chapter focuses on non-parametric estimation with missing data. A functional central limit theorem is established, demonstrating the convergence of the madogram to a tight Gaussian process. Formulas for asymptotic variance are presented, illustrated by a numerical study.Chapter 3 proposes asymptotically independent block (AI-block) models for partitioning variables, defining clusters based on the independence of maxima. An algorithm is introduced to recover clusters without specifying their number in advance. Theoretical efficiency of the algorithm is demonstrated, and a data-driven parameter selection method is proposed. The method is applied to neuroscience and environmental data, showcasing its potential.Chapter 4 adapts partitioning techniques to analyze composite extreme events in European climate data. Sub-regions with dependencies in extreme precipitation and wind speed are identified using ERA5 data from 1979 to 2022. The obtained clusters are spatially concentrated, offering a deep understanding of the regional distribution of extremes. The proposed methods efficiently reduce data size while extracting critical information on extreme events.Chapter 5 proposes a new estimation method for matrices in a latent factor linear model, where each component of a random vector is expressed by a linear equation with factors and noise. Unlike classical approaches based on joint normality, we assume factors are distributed according to standard Fréchet distributions, allowing a better description of extreme dependence. An estimation method is proposed, ensuring a unique solution under certain conditions. An adaptive upper bound for the estimator is provided, adaptable to dimension and the number of factors
Capitoli di libri sul tema "Multivariate stationary process"
Masry, Elias. "Multivariate Probability Density and Regression Functions Estimation of Continuous-Time Stationary Processes from Discrete-Time Data". In Stochastic Processes and Related Topics, 297–314. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-2030-5_17.
Testo completoDorndorf, Alexander, Boris Kargoll, Jens-André Paffenholz e Hamza Alkhatib. "Bayesian Robust Multivariate Time Series Analysis in Nonlinear Regression Models with Vector Autoregressive and t-Distributed Errors". In International Association of Geodesy Symposia. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/1345_2023_210.
Testo completoMerlevède, Florence, Magda Peligrad e Sergey Utev. "Gaussian Approximation under Asymptotic Negative Dependence". In Functional Gaussian Approximation for Dependent Structures, 277–302. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198826941.003.0009.
Testo completoArnold, Stevan J. "Evolution of Multiple Traits on a Stationary Adaptive Landscape". In Evolutionary Quantitative Genetics, 236–60. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780192859389.003.0014.
Testo completoFranses, Philip Hans. "Periodic Cointegration". In Periodicity and Stochastic Trends In Economic Time Series, 177–210. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198774532.003.0009.
Testo completoAtti di convegni sul tema "Multivariate stationary process"
Stefanakos, Christos N., e Konstandinos A. Belibassakis. "Nonstationary Stochastic Modelling of Multivariate Long-Term Wind and Wave Data". In ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2005. http://dx.doi.org/10.1115/omae2005-67461.
Testo completoWang, Junzhe, Shyam Kareepadath Sajeev, Evren Ozbayoglu, Silvio Baldino, Yaxin Liu e Haorong Jing. "Reducing NPT Using a Novel Approach to Real-Time Drilling Data Analysis". In SPE Annual Technical Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/215028-ms.
Testo completoJosupeit, Judith. "Does Pinocchio get Cybersickness? The Mitigating Effect of a Virtual Nose on Cybersickness". In AHFE 2023 Hawaii Edition. AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1004445.
Testo completoYang, Yingnan, Qingling Zhu e Jianyong Chen. "VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/590.
Testo completoTopchii, M., A. Bondarev e A. Degterev. "New Approach for the Probabilistic Assessment of Organic Matter in the Source Rocks of the Bazhenov Formation for Estimation of Shale Hydrocarbons Resources". In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216937-ms.
Testo completoRapporti di organizzazioni sul tema "Multivariate stationary process"
Miamee, A. G., e M. Pourahmadi. Degenerate Multivariate Stationary Processes: Basicity, Past and Future, and Autoregressive Representation. Fort Belvoir, VA: Defense Technical Information Center, maggio 1985. http://dx.doi.org/10.21236/ada158879.
Testo completoMiamee, A. G. On Determining the Predictor of Non-Full-Rank Multivariate Stationary Random Processes. Fort Belvoir, VA: Defense Technical Information Center, marzo 1985. http://dx.doi.org/10.21236/ada159165.
Testo completo