Letteratura scientifica selezionata sul tema "Multiscale structure/ionic transport properties correlations"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Multiscale structure/ionic transport properties correlations".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Multiscale structure/ionic transport properties correlations"

1

Thomas, Elayne M., Phong H. Nguyen, Seamus D. Jones, Michael L. Chabinyc e Rachel A. Segalman. "Electronic, Ionic, and Mixed Conduction in Polymeric Systems". Annual Review of Materials Research 51, n. 1 (26 luglio 2021): 1–20. http://dx.doi.org/10.1146/annurev-matsci-080619-110405.

Testo completo
Abstract (sommario):
Polymers that simultaneously transport electrons and ions are paramount to drive the technological advances necessary for next-generation electrochemical devices, including energy storage devices and bioelectronics. However, efforts to describe the motion of ions or electrons separately within polymeric systems become inaccurate when both species are present. Herein, we highlight the basic transport equations necessary to rationalize mixed transport and the multiscale material properties that influence their transport coefficients. Potential figures of merit that enable a suitable performance benchmark in mixed conducting systems independent of end application are discussed. Practical design and implementation of mixed conducting polymers require an understanding of the evolving nature of structure and transport with ionic and electronic carrier density to capture the dynamic disorder inherent in polymeric materials.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Silva, Wagner, Marcileia Zanatta, Ana Sofia Ferreira, Marta C. Corvo e Eurico J. Cabrita. "Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis". International Journal of Molecular Sciences 21, n. 20 (19 ottobre 2020): 7745. http://dx.doi.org/10.3390/ijms21207745.

Testo completo
Abstract (sommario):
In the last few years, ionic liquids (ILs) have been the focus of extensive studies concerning the relationship between structure and properties and how this impacts their application. Despite a large number of studies, several topics remain controversial or not fully answered, such as: the existence of ion pairs, the concept of free volume and the effect of water and its implications in the modulation of ILs physicochemical properties. In this paper, we present a critical review of state-of-the-art literature regarding structure–property relationship of ILs, we re-examine analytical theories on the structure–property correlations and present new perspectives based on the existing data. The interrelation between transport properties (viscosity, diffusion, conductivity) of IL structure and free volume are analysed and discussed at a molecular level. In addition, we demonstrate how the analysis of microscopic features (particularly using NMR-derived data) can be used to explain and predict macroscopic properties, reaching new perspectives on the properties and application of ILs.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Dong, Dengpan, Weiwei Zhang, Adam Barnett, Jibao Lu, Adri van Duin, Valeria Molinero e Dmitry Bedrov. "Multiscale Modeling of Structure, Transport and Reactivity in Alkaline Fuel Cell Membranes: Combined Coarse-Grained, Atomistic and Reactive Molecular Dynamics Simulations". Polymers 10, n. 11 (20 novembre 2018): 1289. http://dx.doi.org/10.3390/polym10111289.

Testo completo
Abstract (sommario):
In this study, molecular dynamics (MD) simulations of hydrated anion-exchange membranes (AEMs), comprised of poly(p-phenylene oxide) (PPO) polymers functionalized with quaternary ammonium cationic groups, were conducted using multiscale coupling between three different models: a high-resolution coarse-grained (CG) model; Atomistic Polarizable Potential for Liquids, Electrolytes and Polymers (APPLE&P); and ReaxFF. The advantages and disadvantages of each model are summarized and compared. The proposed multiscale coupling utilizes the strength of each model and allows sampling of a broad spectrum of properties, which is not possible to sample using any of the single modeling techniques. Within the proposed combined approach, the equilibrium morphology of hydrated AEM was prepared using the CG model. Then, the morphology was mapped to the APPLE&P model from equilibrated CG configuration of the AEM. Simulations using atomistic non-reactive force field allowed sampling of local hydration structure of ionic groups, vehicular transport mechanism of anion and water, and structure equilibration of water channels in the membrane. Subsequently, atomistic AEM configuration was mapped to ReaxFF reactive model to investigate the Grotthuss mechanism in the hydroxide transport, as well as the AEM chemical stability and degradation mechanisms. The proposed multiscale and multiphysics modeling approach provides valuable input for the materials-by-design of novel polymeric structures for AEMs.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gautam, Ajay, e Marnix Wagemaker. "Lithium Distribution and Site Disorder in Halide-Substituted Lithium Argyrodites: A Structural and Transport Study". ECS Meeting Abstracts MA2023-02, n. 8 (22 dicembre 2023): 3325. http://dx.doi.org/10.1149/ma2023-0283325mtgabs.

Testo completo
Abstract (sommario):
Lithium argyrodite superionic conductor has recently gained significant attention as a potential solid electrolyte for all-solid-state batteries because of its high ionic conductivity and ease of processing. One promising aspect of these materials is the ability to introduce halide (Li6-xPS5-xY1+x, Y = Cl and Br ) into the crystal structure, which can greatly impact the lithium distribution over the wide range of accessible sites and structural site-disorder between the S2₋ and Y₋ anion on Wyckoff 4d site, strongly influences the ionic conductivity. However, the relationship between halide substitution, structural site-disorder, and lithium distribution is not fully understood. In this study, we investigate the effect of halide substitution on lithium argyrodite and engineer site-disorder by changing the synthesis protocol. We reveal the lithium substructure and ionic transport correlations using neutron diffraction, solid-state NMR, and electrochemical impedance spectroscopy, We find that higher ionic conductivity is correlated with a negative charge on the 4d site, as replacing the S2− with Br− leads to a lowered average charge on the 4d site and weaker interactions within the Li+ “cage”, promoting a migration pathway for Li+ ions across the Li+ cage. We also identify a new T4 Li+ site, which enables an alternative jump route (T5–T4–T5) with a lower migration energy barrier. The resulting expansion of Li+ cages and increased connections between cages leads to a maximum ionic conductivity of 8.55 mS cm-1 with higher site-disorder, an improvement of 11-fold compared to lower site-disorder. Overall, this work provides a deeper understanding of the structure-transport correlations in lithium argyrodite, specifically how site-disorder and halide substitution impact the lithium substructure and transport properties.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Sacci, Robert L., Tyler H. Bennett, Kee Sung Han, Hong Fang, Puru Jena, Vijay Murugesan e Jagjit Nanda. "How Halide Sub-Lattice Affects Li Ion Transport in Antiperovskites". ECS Meeting Abstracts MA2022-02, n. 4 (9 ottobre 2022): 467. http://dx.doi.org/10.1149/ma2022-024467mtgabs.

Testo completo
Abstract (sommario):
Li-based antiperovskites (LiAP, Li3-x OH x X, X = Cl, Br) are an emergent class of Li-ion conductors that are potential candidates for electrolytes in all-solid-state batteries. As a material class, pLiAP shows vast compositional design freedom; however, the resulting properties are susceptible to synthesis and processing methodologies. For example, proton incorporation and halide mixing stabilize the perovskite cubic phase near room temperature, and halides mixtures near the eutectic points drive the solid-state reaction temperature down, allowing for faster synthesis and processing conditions (< 1 h). The mixed halogen compositions, such as Li2OHCl0.37Br0.63, also show a 30-fold improvement in room temperature ionic conductivity of a single halide structure, 1.5 x 10-6 vs. 4.9 x 10-8 S cm-1 (Li2OHCl). Despite the growing interest in these materials, important questions remain about LiAPs on the structure-property correlation upon halide substitution and the correlations between the OH/halide dynamics and the Li-ion transport. We thus attempted to deconvolute how proton dynamics and halide substitution enhance or impede ionic conduction in pLiAP at compositions near the halide salts' eutectic points. We combined infrared spectroscopy and nuclear magnetic resonance (NMR) with first-principles density functional theory (DFT) calculations to deconvolute halide mixing effects from local proton dynamics on Li-ion transport. The NMR results and ab initio molecular dynamics suggest that Li+ transport is more strongly correlated with halide dynamics. While the hydroxide does stabilize the highly conductive cubic structure, it limits correlative ionic transport and thus lowers Li+ conductivity. Experiment design, data analysis, and manuscript preparation (RLS) were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Synthesis (THB and JN) were supported by Asst. Secretary, Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (VTO) through the Advanced Battery Materials Research (BMR) Program. P. J. acknowledges partial support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-96ER45579. H. F. was supported from U.S. Department of Energy (Award No. DE-EE0008865). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The NMR characterization part of the work is supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, and Basic Energy Sciences. The NMR work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a DOE User Facility sponsored by the Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory. Figure 1
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Qi, Yue. "(Invited) Modeling the Charge Transfer Reactions at Li/SEI/Electrolyte Interfaces in Lithium-Ion Batteries". ECS Meeting Abstracts MA2023-01, n. 45 (28 agosto 2023): 2452. http://dx.doi.org/10.1149/ma2023-01452452mtgabs.

Testo completo
Abstract (sommario):
Two kinds of charge transfer reactions are critical for the performance and life of lithium battery: the desired ion transfer reaction occurring during each charge/discharge cycle, , and the undesired electron transfer reactions leading to the parasitic chemical decomposition of the electrolyte and solid electrolyte interphase (SEI) formation/growth. The heterogeneous multi-component nature of SEI dominates its ionic and electronic transport properties and controls these two charge transfer reactions. Density Functional Theory (DFT)-informed multiscale modeling has been providing valuable insights under the scarcity of quantitative experiments. For example, the LiF/Li2CO3 interface was demonstrated to increase the ionic conductivity of mixed SEI nanocomposite by forming an ionic space charge region near the interface and promoting more Li-ion interstitials in Li2CO3, although LiF itself has low Li-ion conducting carriers and conductivity. To form a LiF-rich SEI layer, the electrolyte compositions need to be designed. Since the SEI formation occurs on the charged surface, the electric double layer (EDL) structure near the charged surfaces needs to be incorporated into the modeling. Here interactive classical molecular dynamics (MD), DFT, and data statistical analysis were combined to illustrate the effect of EDL on SEI formation in two essential electrolytes, the carbonate-based electrolyte for Li-ion batteries and the ether-based electrolyte for batteries with Li-metal anodes. It was found the effectiveness of adding fluoroethylene carbonate (FEC) to form the beneficial F-containing SEI component (e.g., LiF) varies with the electrolyte and temperature, because of the interplay of ion-solvent interactions with the surface charge. These integrated modeling provided quantitative guidance for electrolyte/SEI/Li-metal interface design.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Dehghan Khalili, A., J. Y. Y. Arns, F. Hussain, Y. Cinar, W. V. V. Pinczewski e C. H. H. Arns. "Permeability Upscaling for Carbonates From the Pore Scale by Use of Multiscale X-Ray-CT Images". SPE Reservoir Evaluation & Engineering 16, n. 04 (10 ottobre 2013): 353–68. http://dx.doi.org/10.2118/152640-pa.

Testo completo
Abstract (sommario):
Summary High-resolution X-ray-computed-tomography (CT) images are increasingly used to numerically derive petrophysical properties of interest at the pore scale—in particular, effective permeability. Current micro-X-ray-CT facilities typically offer a resolution of a few microns per voxel, resulting in a field of view of approximately 5 mm3 for a 2,0482 charge-coupled device. At this scale, the resolution is normally sufficient to resolve pore-space connectivity and calculate transport properties directly. For samples exhibiting heterogeneity above the field of view of such a single high-resolution tomogram with resolved pore space, a second low-resolution tomogram can provide a larger-scale porosity map. This low-resolution X-ray-CT image provides the correlation structure of porosity at an intermediate scale, for which high-resolution permeability calculations can be carried out, forming the basis for upscaling methods dealing with correlated heterogeneity. In this study, we characterize spatial heterogeneity by use of overlapping registered X-ray-CT images derived at different resolutions spanning orders of magnitude in length scales. A 38-mm-diameter carbonate core is studied in detail and imaged at low resolution—and at high resolution by taking four 5-mm-diameter subsets, one of which is imaged by use of full-length helical scanning. Fine-scale permeability transforms are derived by use of direct porosity/permeability relationships, random sampling of the porosity/permeability scatter plot as a function of porosity, and structural correlations combined with stochastic simulation. A range of these methods is applied at the coarse scale. We compare various upscaling methods, including renormalization theory, with direct solutions by use of a Laplace solver and report error bounds. Finally, we compare with experimental measurements of permeability at both the small-plug and the full-plug scale. We find that both numerically and experimentally for the carbonate sample considered, which displays nonconnecting vugs and intrafossil pores, permeability increases with scale. Although numerical and experimental results agree at the larger scale, the digital core-analysis results underestimate experimentally measured permeability at the smaller scale. Upscaling techniques that use basic averaging techniques fail to provide truthful vertical permeability at the fine scale because of large permeability contrasts. At this scale, the most accurate upscaling technique uses Darcy's law. At the coarse scale, an accurate permeability estimate with error bounds is feasible if spatial correlations are considered. All upscaling techniques work satisfactorily at this scale. A key part of the study is the establishment of porosity transforms between high-resolution and low-resolution images to arrive at a calibrated porosity map to constrain permeability estimates for the whole core.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Eikerling, Michael. "(Invited) Decoding the Symbiotic Relationship between Ionomer and Water in Cathode Catalyst Layers of PEM Fuel Cells". ECS Meeting Abstracts MA2022-02, n. 45 (9 ottobre 2022): 1696. http://dx.doi.org/10.1149/ma2022-02451696mtgabs.

Testo completo
Abstract (sommario):
The pressing need for highly-performing and environmentally benign energy technologies continues to spur on research on polymer electrolyte fuel cells (PEFC). Among the components that are needed for a well-functioning, durable, and affordable PEFC, the cathode catalyst layer (CCL) continues to stand out. The main function to be provided by the CCL is to facilitate the oxygen reduction reaction (ORR). However, this function entails an intricate interplay of microscopic kinetics with the transport of electrons, protons, oxygen molecules, and water. A hierarchy of structural effects must be considered, as illustrated in Figure 1. Due to the complex composition and multiscale nature of the CCL, physical modeling has gained high importance in efforts to rationalize the dynamic interplay of structure, properties, and performance. The first part of the presentation will briefly review the capabilities of model-based analyses of experimental data to deconvolute and quantify voltage loss contributions,1 extract kinetic and transport parameters from fitting and discover systematic trends and correlations among these parameters,2 provide an activity map of the layer, and evaluate the overall effectiveness factor of Pt utilization.3 Macrohomogeneous modelling can propose or predict the optimal CCL thickness or macroscopic effective composition (for the target range of operating conditions). Recognizing the importance of an optimal water-distribution for a well-functioning CCL, recent efforts in CCL modeling have been focusing on the consistent treatment of aspects like pore size distributions and pore network morphologies as well as wettability properties. The ionomer inclusions in the CCL play a crucial role in this context. At the microscopic scale, the ionomer film that forms an interface with the water-covered catalyst-support surface strongly impacts the local reaction environment that determines the rate of the ORR as well as that of platinum dissolution. Moreover, the structure and distribution of ionomer inclusions determine the wetting behaviour of pores and thus the water sorption properties of the porous composite CCL, which in turn affect the transport properties for oxygen and water. Recent forays in modelling that strive to unravel the intertwined impacts of ionomer and water will be presented. As a final consideration, a CCL cannot be understood and optimized as a stand-alone component. Overarching balances at the PEFC level in terms of reactant, charge, water, and heat fluxes must be considered. Comprehensive modeling approaches must account for the coupling of the corresponding local equilibria and transport phenomena across the whole cell, including polymer electrolyte membrane, diffusion media and flow fields. Efforts focusing on the coupled water fluxes across the cell are underway with promising results to look out for. References. 1 M. Baghalha, J. Stumper and M. Eikerling, ECS Transactions 28, 159–167 (2010). 2 T. Muzaffar, T. Kadyk and M. Eikerling, Sustainable Energy & Fuels 2, 1189–1196 (2018). 3 M. Eikerling and A.A. Kulikovsky, Polymer Electrolyte Fuel Cells – Physical Principles of Materials and Operation, CRC Press Taylor & Francis Group, 2014. Figure 1
Gli stili APA, Harvard, Vancouver, ISO e altri
9

van der Heijden, Maxime, Marit Kroese, Zandrie Borneman e Antoni Cuenca. "Investigating Mass Transfer Relationships in Stereolithography-Based 3D Printed Electrodes for Redox Flow Batteries". ECS Meeting Abstracts MA2023-01, n. 55 (28 agosto 2023): 2658. http://dx.doi.org/10.1149/ma2023-01552658mtgabs.

Testo completo
Abstract (sommario):
Redox flow batteries are a promising option for large-scale energy storage but remain too costly for widespread deployment. One approach to increase cost competitiveness is to improve the power density and efficiency of the electrochemical cell. Porous electrodes determine the performance of the cell, and their three-dimensional structure determines the electrolyte transport, fluid pressure drop, and the available surface area for electrochemical reactions [1]. Conventional porous electrodes are fibrous mats assembled in coherent structures [2]; however, they are repurposed from fuel cell gas diffusion electrodes and have not been tailored for redox flow batteries. Hence, an effective means to improve the performance of redox flow batteries is by engineering porous electrode structures to sustain the requirements of liquid-phase electrochemistry. To this purpose, there is a need to develop new manufacturing techniques affording a higher degree of control over the electrode microstructure and resulting properties. Additive manufacturing, or 3D printing, can be employed to manufacture customized, controlled, and deterministic architectures, enabling the fine-tuning of the electrical and hydraulic performance of porous electrodes [3]. In this study, we manufacture model grid structures using stereolithography 3D printing followed by carbonization (Figure 1a) to tune the physiochemical properties of electrodes to be used in redox flow batteries. We employ a suite of microscopy, tomography, spectroscopy, fluid dynamics, and electrochemical diagnostics to understand the impact of the electrode structure on the mass transport and hydraulic performance of ordered lattice structures in flow cells. Here, the influence of the printing direction, pillar geometry (Figure 1b), and flow field type on mass transport is investigated using an organic electrolyte. We elucidate correlations between the electrode structure and performance metrics, namely surface area, pressure drop, and mass transfer correlations. We find that the printing orientation impacts the electrode performance through a change in electrode morphology caused by resin spreading and surface roughness, affecting the shrinking direction upon carbonization, internal surface area, and thus the charge transfer, mass transfer, and hydraulic resistances. Furthermore, we find that mass transfer rates within the electrode are enhanced by using an interdigitated flow field or by altering the pillar shape to a helical or triangular design, which we hypothesize improves mixing. Compared to commercial carbon-fiber electrodes, the pressure drop is significantly reduced (Figure 1c) as expected due to larger pore sizes (~500 μm for the grids vs. 2-100 μm for the Freudenberg H23 paper electrode and 2-300 μm for the ELAT Cloth electrode). Even though the commercial electrodes feature a superior internal surface area compared to the 3D printed electrodes, their area normalized mass transfer coefficients are lower (Figure 1d). Going forward, the use of printing technologies enabling finer features in combination with carbonization at elevated temperatures can be used to manufacture multiscale electrodes simultaneously providing low hydraulic resistance and excellent electrochemical performance. Additive manufacturing in combination with emerging computational approaches in topology optimization [4] might enable the bottom-up design and manufacturing of advanced electrode materials. References [1] M. van der Heijden, A. Forner-Cuenca, Encyclopedia of Energy Storage, 480-499 (2022) [2] A. Forner-Cuenca et al., J. Electrochem. Soc., 166, 10, A2230-A2241 (2019) [3] V.A. Beck et al., Proc. Natl. Acad. Sci., 118, 32, 1-10 (2021) [4] R. van Gorp & M. van der Heijden et al., Chem. Eng. J., 139947 (2022) Figure 1
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Khan, Md Sharif, Ambroise Van Roekeghem, Stefano Mossa, Flavien Ivol, Laurent Bernard, Lionel Picard e Natalio Mingo. "Ionic Liquid Crystals As Solid Organic Electrolytes for Li-Ion Batteries: Experiments and Modeling". ECS Meeting Abstracts MA2022-01, n. 2 (7 luglio 2022): 183. http://dx.doi.org/10.1149/ma2022-012183mtgabs.

Testo completo
Abstract (sommario):
The development of the new electrolytes is essential to increase the energy density of the Li-ion batteries (LIBs)1. Solid electrolytes have attracted the interest of researchers as a next-generation electrolyte for LIBs due to their superior physical and chemical stability, large working potential windows, high transference number, and intrinsic safety2 3. In this study, we have designed and synthesized novel organic electrolytes for LIBs with a naphthalene mesogenic moiety bearing a lithium sulfonate group connected to two flexible long-alkyl chains. Starting from the lithium 4-aminonaphthalene-1-sulphonate building block, alkyl-tails were successfully doubly grafted on the amine function with N, N-di-isopropylethylamine in N, N-di-methylformamide. Once the reaction was completed, a washing, purification and neutralization step was carried out to obtain the desired product. Those electrolytes have been synthesized with 95 % purity as suggested from the NMR and mass spectrum. The chains length were differ by the number of alkyl groups in the chains from 8, 12, and 16, namely lithium 4 - (dioctylamino) naphthalene – 1 – sulfonate (BS-Li-8), lithium 4 - (didodecylamino) naphthalene – 1 - sulfonate (BS-Li-12), and lithium 4 - (dihexadecylamino) naphthalene – 1 – sulfonate (BS-Li-16). We have employed molecular dynamics simulations and various experimental techniques for a comprehensive understanding of the bulk structure and transport mechanism of those electrolytes. Simulated static structural factor, radial distribution functions, and experimental small angle x-ray scattering spectrum suggest that degree of aggregation, ionic correlations, and structural properties of materials at the nanoscale of the electrolyte molecules varies with the length of the alkyl chains. The Li+ ion mobility calculated from experimental Electrochemical Impedance Spectra, using a symmetrical cell with blocking electrodes and molecular dynamics simulations reveal that BS-Li-12 is the most conductive (approximately 10-3 S / cm at 1400 C) owing to the weaker cation-anion correlation than others. It was observed that the conductivity of the Li+ ions is directly related to the coordination number between Li+ and anionic centers, since, in BS-Li-12, Li+ coordinates with two anionic centers while for others, it is three. During the conduction, Li+ move from one anionic site to another by changing their coordination number with anion. We successfully synthesized next-generation organic electrolytes with well-organized Li+ conduction channels. The comprehensive study of the influence of the nonpolar alkyl chain on the bulk structural arrangement and conductivity of such electrolytes will contribute significantly to the development of future LIBs electrolytes. References: (1) Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451 (7179), 652–657. https://doi.org/10.1038/451652a. (2) Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials 2017, 2 (4), 16103. https://doi.org/10.1038/natrevmats.2016.103. (3) Quartarone, E.; Mustarelli, P. Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives. Chem. Soc. Rev. 2011, 40 (5), 2525–2540. https://doi.org/10.1039/C0CS00081G. Figure 1
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Multiscale structure/ionic transport properties correlations"

1

Pung, Hélène. "Cristaux liquides ioniques thermotropes : Relations structure/propriétés de transport ionique". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALV007.

Testo completo
Abstract (sommario):
Développer des études multi-échelles spatiales (nano/méso/micro-macroscopiques) et temporelles est crucial pour comprendre, maîtriser et piloter les relations liant la structure aux propriétés de transport ionique de matériaux fonctionnels hiérarchiquement auto-assemblés. C’est selon ces lignes de force que ce travail exploratoire se positionne pour relever les défis scientifiques associés. Il vise notamment à rassembler des éléments de compréhension pour générer de familles d'électrolytes à conduction (cat/an)ionique ajustables de par leur conception et pouvant être mises en œuvre par des processus robustes d'élaboration qui autoriseront leur intégration dans des dispositifs de conversion et stockage électrochimique de l’énergie plus efficaces. Les familles modèles de la matière molle (fonctionnelle) électrolytique choisies sont les Cristaux Liquides Ioniques Thermotropes (CLITs) qui combinent synergétiquement l’autoassemblage hiérarchique dynamique à travers différentes échelles à des facultés d’autoréparation pour encoder un transport ionique de dimensionnalité (quasi-1D/quasi-2D/3D) contrôlée. L’ingénierie moléculaire, la synthèse et l’étude de familles modèles de ces conducteurs (an/cat)ioniques (A/C)-CLITs stimuli-sensibles sont ainsi présentés et discutés dans ce travail de recherche.L’étude de l’organisation supramoléculaire d’une famille modèle de C-CLITs conducteurs des cations K+ et Na+ décrit i) une mésophase Cubique bicontinue (Cubbi) à symétrie Ia3d monotrope (c’est-à-dire qui se développe seulement lors de la première montée en température) et ii) une mésophase Colonnaire hexagonale (Colhex), sièges respectifs de processus de transport 3D et quasi-1D. Les parties ioniques polaires constituent le cœur des colonnes et les chaînes aliphatiques la périphérie de celles-ci. L’étude expérimentale et la modélisation du confinement des porteurs de charges au sein d’une famille modèle d’A-CLITs C18C18Im+/X- (X- = Br-, I-, N(CN)2-), formant des mésophases Smectiques A interdigitées (SmAd sièges d’un transport ionique anisotrope quasi-2D), révèlent un régime de nanoconfinement des anions soumis à des interactions électrostatiques au sein des sous-couches polaires (épaisseur de ca. 1 nm) de leur organisation lamellaire. L’étude de ces CLITs aborde ainsi l’impact fonctionnel de la mosaïcité, c’est-à-dire de la coexistence de domaines mésomorphes présentant des orientations et tailles différentes sur le transport ionique.Une première description expérimentale directe a permis de décrire le rôle de cette mosaïcité dynamique à la fois i) sur l’organisation à longue distance de domaines mésomorphes et ii) sur le transport ionique à l’échelle méso-/macro-scopique. Au sein des mésophases formées par le C-CLIT conducteur du cation K+, la mésophase Cubbi présente des valeurs de conductivité deux ordres de grandeur plus importantes que celles liées à la mésophase Colhex. La mésophase Cubbi ne nécessitant pas de stratégies spécifiques de gestion des défauts (faible densité de défauts/d’interfaces homophasiques), les sous-domaines polaires peuvent y percoler efficacement selon un mécanisme intrinsèquement 3D. L’ordre à longue distance des domaines dynamiques mésomorphes SmAd de l’A-CLIT C18C18Im+/N(CN)2-, induit par l’application d’un stimulus externe (un champ magnétique de 1 T), se traduit par une augmentation de ca. 1.6x la taille moyenne des domaines mésomorphes (de 92 à 145 nm) à 80°C. Du fait de la réduction du désordre et du nombre d’interfaces homophasiques (pouvant pénaliser le transport des anions), une augmentation naturelle (attendue) des valeurs de conductivités d’un facteur ca. x2.6 (9 à 25 µS·cm-1) est observée.In fine, les CLITs, matériaux électrolytiques 2.0 encodant propriétés de transport ionique et faculté (bio-inspirée) d’auto-assemblage/réparation dynamique, se positionnent comme une classe originale de matériaux fonctionnels stimuli-sensibles pour le stockage et la conversion électrochimique de l’énergie
Developing multi-scale spatial (nano/meso/micro-macroscopic) and temporal studies is crucial to understand, control, and pilot the relationships linking the structure to the ionic transport properties of hierarchically self-assembled functional materials. It is along these research lines that this exploratory work is positioned to meet their associated scientific challenges. It aims in particular to bring together elements of understanding for designing families of electrolytes with tuneable-by-design (cat/an)ionic conductivity levels and that can be implemented by reliable manufacturing processes to authorize their scalable integration into more efficient electrochemical energy conversion and storage devices. The scrutinized model families of soft-matter electrolytes are Thermotropic Ionic Liquid Crystals (TILCs), which synergistically combine dynamic hierarchical self-assembly with self-healing functionalities to encode dimensionality (quasi-1D/ quasi-2D/3D) controlled ionic transport. This research work presents and discusses the molecular engineering, syntheses and detailed studies of these model stimuli-responsive (An/Cat)ionic (A/C)-TILCs conductors.The study of the supramolecular organization of a model family of K+ and Na+ cation-conducting C-TILCs has unravelled i) a monotropic (i.e. which develops only during of the first heating scan) bicontinuous Cubic mesophase (Cubbi) with an Ia3d symmetry and ii) a hexagonal Columnar mesophase (Colhex), encoding 3D and quasi-1D transport processes, respectively. Polar ionic sub-domains are localized at the heart of the columns decorated at their periphery by aliphatic chains. The experimental study and modelling of the confinement of charge carriers within a model family of C18C18Im+/X- (X= Br-, I-, N(CN)2-) A-TILCs forming interdigitated Smectic A mesophases (SmAd are hosting quasi-2D anisotropic ionic transport) reveals a regime of nanoconfinement of anions subjected to electrostatic interactions within the ca. 1 nm-"thick" polar sub-layers within their lamellar organizations. The study of these TILCs thus addresses the functional impact of mosaicity, i.e. how the coexistence of mesomorphic domains presenting different orientations and sizes is impacting ionic transport.A first direct experimental description allows to describe the role of this dynamic mosaicity both i) on the long-range organization of mesomorphic domains and ii) onto ion transport at the meso-/macro-scopic scale. Within mesophases formed by the K+-cation conducting C-TILC, the Cubbi mesophase presents conductivity values two orders of magnitude greater than those associated to the Colhex mesophase. As the Cubbi mesophase does not require specific defect management strategies (low density of defects/homophasic interfaces), it turns out that polar subdomains can thus percolate efficiently according to an intrinsically 3D mechanism. In contrast, the long-range ordering of the (dynamic) SmAd mesomorphic domains of the C18C18Im+/N(CN)2- A-TILC, induced by the application of an external stimulus (here, a magnetic field of 1 T), results in a ca. x1.6 increase (from 92 to 145 nm) of the average size of mesomorphic domains at 80°C. Due to the reduction of the disorder and of the number of homophasic interfaces (which can penalize the transport of anions), a natural (expected) increase in conductivity values by a factor ca. x2.6 (9 to 25 µS·cm-1) is observed.Ultimately, TILCs, i.e. 2.0 electrolytic materials encoding ionic transport properties and (bioinspired) dynamic self-assembly/repairing functionalities, are consisting in an original class of stimuli-sensitive functional materials for the electrochemical conversion and storage of energy
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia