Segui questo link per vedere altri tipi di pubblicazioni sul tema: Multiple integrals.

Articoli di riviste sul tema "Multiple integrals"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Multiple integrals".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Bandyrskii, B., L. Hoshko, I. Lazurchak e M. Melnyk. "Optimal algorithms for computing multiple integrals". Mathematical Modeling and Computing 4, n. 1 (1 luglio 2017): 1–9. http://dx.doi.org/10.23939/mmc2017.01.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Greaves, G. R. H., R. R. Hall, M. N. Huxley e J. C. Wilson. "Multiple Franel integrals". Mathematika 40, n. 1 (giugno 1993): 51–70. http://dx.doi.org/10.1112/s0025579300013711.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Dynkin, E. B. "Multiple path integrals". Advances in Applied Mathematics 7, n. 2 (giugno 1986): 205–19. http://dx.doi.org/10.1016/0196-8858(86)90032-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Dasgupta, A., e G. Kallianpur. "Multiple fractional integrals". Probability Theory and Related Fields 115, n. 4 (1 novembre 1999): 505–25. http://dx.doi.org/10.1007/s004400050247.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Papp, F. J. "Expressing certain multiple integrals as single integrals". International Journal of Mathematical Education in Science and Technology 21, n. 1 (marzo 1990): 137–39. http://dx.doi.org/10.1080/0020739900210120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Benabidallah, A., Y. Cherruault e Y. Tourbier. "Approximation of multiple integrals by simple integrals". Kybernetes 30, n. 9/10 (dicembre 2001): 1223–39. http://dx.doi.org/10.1108/03684920110405836.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Malyutin, V. B., e B. O. Nurjanov. "The semiclassical approximation of multiple functional integrals". Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 59, n. 4 (5 gennaio 2024): 302–7. http://dx.doi.org/10.29235/1561-2430-2023-59-4-302-307.

Testo completo
Abstract (sommario):
In this paper, we study the semiclassical approximation of multiple functional integrals. The integrals are defined through the Lagrangian and the action. Of all possible trajectories, the greatest contribution to the integral is given by the classical trajectory x̅cl for which the action S takes an extremal value. The classical trajectory is found as a solution of the multidimensional Euler – Lagrange equation. To calculate the functional integrals, the expansion of the action with respect to the classical trajectory is used, which can be interpreted as an expansion in powers of Planck’s constant. The numerical results for the semiclassical approximation of double functional integrals are given.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Greaves, G. R. H., R. R. Hall, M. N. Huxley e J. C. Wilson. "Multiple Franel integrals: Corrigendum". Mathematika 41, n. 2 (dicembre 1994): 401. http://dx.doi.org/10.1112/s0025579300007476.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Grosjean, C. C. "Two Trigonometric Multiple Integrals". SIAM Review 33, n. 1 (marzo 1991): 114. http://dx.doi.org/10.1137/1033008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Podol’skii, A. A. "Identities for multiple integrals". Mathematical Notes 98, n. 3-4 (settembre 2015): 624–30. http://dx.doi.org/10.1134/s0001434615090291.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Bardina, Xavier, e Carles Rovira. "On the strong convergence of multiple ordinary integrals to multiple Stratonovich integrals". Publicacions Matemàtiques 65 (1 luglio 2021): 859–76. http://dx.doi.org/10.5565/publmat6522114.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Li, Haibin, Yangtian Li e Shangjie Li. "Dual Neural Network Method for Solving Multiple Definite Integrals". Neural Computation 31, n. 1 (gennaio 2019): 208–32. http://dx.doi.org/10.1162/neco_a_01145.

Testo completo
Abstract (sommario):
This study, which examines a calculation method on the basis of a dual neural network for solving multiple definite integrals, addresses the problems of inefficiency, inaccuracy, and difficulty in finding solutions. First, the method offers a dual neural network method to construct a primitive function of the integral problem; it can approximate the primitive function of any given integrand with any precision. On this basis, a neural network calculation method that can solve multiple definite integrals whose upper and lower bounds are arbitrarily given is obtained with repeated applications of the dual neural network to construction of the primitive function. Example simulations indicate that compared with traditional methods, the proposed algorithm is more efficient and precise in obtaining solutions for multiple integrals with unknown integrand, except for the finite input-output data points. The advantages of the proposed method include the following: (1) integral multiplicity shows no influence and restriction on the employment of the method; (2) only a finite set of known sample points is required without the need to know the exact analytical expression of the integrand; and (3) high calculation accuracy is obtained for multiple definite integrals whose integrand is expressed by sample data points.
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Benabidallah, A., Y. Cherruault e Y. Tourbier. "Approximation method error of multiple integrals by simple integrals". Kybernetes 32, n. 3 (aprile 2003): 343–53. http://dx.doi.org/10.1108/03684920310458575.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Bruggeman, Roelof, e Youngju Choie. "Multiple period integrals and cohomology". Algebra & Number Theory 10, n. 3 (12 giugno 2016): 645–64. http://dx.doi.org/10.2140/ant.2016.10.645.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Yu, Chii-Huei, e Bing-Huei Chen. "Solving Multiple Integrals Using Maple". World Journal of Computer Application and Technology 2, n. 4 (aprile 2014): 83–88. http://dx.doi.org/10.13189/wjcat.2014.020401.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Yu, Chii-Huei, e Bing-Huei Chen. "Evaluating Multiple Integrals Using Maple". Mathematics and Statistics 2, n. 4 (aprile 2014): 155–61. http://dx.doi.org/10.13189/ms.2014.020401.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Trif, Tiberiu. "Multiple Integrals of Symmetric Functions". American Mathematical Monthly 104, n. 7 (agosto 1997): 605. http://dx.doi.org/10.2307/2975053.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Blankenbecler, Richard. "Multiple scattering and functional integrals". Physical Review D 55, n. 4 (15 febbraio 1997): 2441–48. http://dx.doi.org/10.1103/physrevd.55.2441.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Tocino, A. "Multiple stochastic integrals with Mathematica". Mathematics and Computers in Simulation 79, n. 5 (gennaio 2009): 1658–67. http://dx.doi.org/10.1016/j.matcom.2008.08.005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Zelikin, M. I. "Field theories for multiple integrals". Journal of Mathematical Sciences 177, n. 2 (agosto 2011): 270–98. http://dx.doi.org/10.1007/s10958-011-0457-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Nourdin, Ivan, e Giovanni Peccati. "Noncentral convergence of multiple integrals". Annals of Probability 37, n. 4 (luglio 2009): 1412–26. http://dx.doi.org/10.1214/08-aop435.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Trif, Tiberiu. "Multiple Integrals of Symmetric Functions". American Mathematical Monthly 104, n. 7 (agosto 1997): 605–8. http://dx.doi.org/10.1080/00029890.1997.11990688.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Peccati, Giovanni. "Gaussian Approximations of Multiple Integrals". Electronic Communications in Probability 12 (2007): 350–64. http://dx.doi.org/10.1214/ecp.v12-1322.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Mehta, M. L., e J.-M. Normand. "On some definite multiple integrals". Journal of Physics A: Mathematical and General 30, n. 24 (21 dicembre 1997): 8671–84. http://dx.doi.org/10.1088/0305-4470/30/24/026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Haddad, Roudy El. "Repeated integration and explicit formula for the \(n\)-th integral of \(x^m(\ln x)^{m'}\)". Open Journal of Mathematical Sciences 6, n. 1 (10 giugno 2022): 51–75. http://dx.doi.org/10.30538/oms2022.0178.

Testo completo
Abstract (sommario):
Repeated integration is a major topic of integral calculus. In this article, we study repeated integration. In particular, we study repeated integrals and recurrent integrals. For each of these integrals, we develop reduction formulae for both the definite as well as indefinite form. These reduction formulae express these repetitive integrals in terms of single integrals. We also derive a generalization of the fundamental theorem of calculus that expresses a definite integral in terms of an indefinite integral for repeated and recurrent integrals. From the recurrent integral formulae, we derive some partition identities. Then we provide an explicit formula for the \(n\)-th integral of \(x^m(\ln x)^{m'}\) in terms of a shifted multiple harmonic star sum. Additionally, we use this integral to derive new expressions for the harmonic sum and repeated harmonic sum.
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Ernst, Thomas. "Further results on multiple q-Eulerian integrals for various q-hypergeometric functions". Publications de l'Institut Math?matique (Belgrade) 108, n. 122 (2020): 63–77. http://dx.doi.org/10.2298/pim2022063e.

Testo completo
Abstract (sommario):
We continue the study of single and multiple q-Eulerian integrals in the spirit of Exton, Driver, Johnston, Pandey, Saran and Erd?lyi. The method of proof is often the q-beta integral method with the correct q-power together with the q-binomial theorem. By the Totov method we can prove summation theorems as special cases of multiple q-Eulerian integrals. The Srivastava ? notation for q-hypergeometric functions is used to enable the shortest possible form of the long formulas. The various q-Eulerian integrals are in fact meromorphic continuations of the various multiple q-functions, suitable for numerical computations. In the end of the paper a generalization of the q-binomial theorem is used to find q-analogues of a multiple integral formulas for q-Kamp? de F?riet functions.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Shao, Zijia, Shuohao Wang e Hetian Yu. "Application of the Residue Theorem to Euler Integral, Gaussian Integral, and Beyond". Highlights in Science, Engineering and Technology 38 (16 marzo 2023): 311–16. http://dx.doi.org/10.54097/hset.v38i.5821.

Testo completo
Abstract (sommario):
The paper is divided into three different parts, which use the residue theorem to solve several different integrals, namely, the Euler integral, the Gaussian integral, the Fresnel integral, and so forth. The process of using the resiude theorem to determine these integrals is to first turn the integrals into convenient forms of complex integrals, and then find integral perimeters so that any integral on one of the curves is the required integral, through the drawing observation of the contour to write the original integral into the form of multiple integral. By studying the resiude theorem to solve the problem of complex integrals, it is demonstrated that the resiude theorem is actually a process that makes the calculation easier. These solved integrals have a wide range of applications including the study of the refraction of light, analytics, probability theory, combinatorial mathematics, and unification of the continuous Fourier transform.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Benabidallah, A., Y. Cherruault e G. Mora. "Approximation of multiple integrals by simple integrals involving periodic functions". Kybernetes 33, n. 9/10 (ottobre 2004): 1472–90. http://dx.doi.org/10.1108/03684920410534470.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Bajic, Tatjana. "On relation between one multiple and a corresponding one-dimensional integral with applications". Yugoslav Journal of Operations Research 28, n. 1 (2018): 79–92. http://dx.doi.org/10.2298/yjor160916020b.

Testo completo
Abstract (sommario):
For a given finite positive measure on an interval I ? R, a multiple stochastic integral of a Volterra kernel with respect to a product of a corresponding Gaussian orthogonal stochastic measure is introduced. The Volterra kernel is taken such that the multiple stochastic integral is a multiple iterated stochastic integral related to a parameterized Hermite polynomial, where parameter depends on Gaussian distribution of an underlying one-dimensional stochastic integral. Considering that there exists a connection between stochastic and deterministic integrals, we expose some properties of parameterized Hermite polynomials of Gaussian random variable in order to prove that one multiple integral can be expressed by a corresponding one-dimensional integral. Having in mind the obtained result, we show that a system of multiple integrals, as well as a collection of conditional expectations can be calculated exactly by generalized Gaussian quadrature rule.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Gupta, A. K., e D. G. Kabe. "On a zonal polynomial integral". Journal of Applied Mathematics 2003, n. 11 (2003): 569–73. http://dx.doi.org/10.1155/s1110757x03209074.

Testo completo
Abstract (sommario):
A certain multiple integral occurring in the studies of Beherens-Fisher multivariate problem has been evaluated by Mathai et al. (1995) in terms of invariant polynomials. However, this paper explicitly evaluates the context integral in terms of zonal polynomials, thus establishing a relationship between zonal polynomial integrals and invariant polynomial integrals.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Pranevich, Andrei, Alexander Grin e Yanka Musafirov. "Multiple partial integrals of polynomial Hamiltonian systems". Acta et commentationes: Ştiinţe Exacte şi ale Naturii 12, n. 2 (febbraio 2022): 33–42. http://dx.doi.org/10.36120/2587-3644.v12i2.33-42.

Testo completo
Abstract (sommario):
We consider an autonomous real polynomial Hamiltonian ordinary differential system. Sufficient conditions for the construction of additional first integrals on polynomial partial integrals and multiple polynomial partial integrals are obtained. Classes of autonomous polynomial Hamiltonian ordinary differential systems with first integrals which analytically expressed by multiple polynomial partial integrals are identified. Also we present examples that illustrate the theoretical results.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Jang, Lee-Chae. "On Multiple Generalizedw-Genocchi Polynomials and Their Applications". Mathematical Problems in Engineering 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/316870.

Testo completo
Abstract (sommario):
We define the multiple generalizedw-Genocchi polynomials. By using fermionicp-adic invariant integrals, we derive some identities on these generalizedw-Genocchi polynomials, for example, fermionicp-adic integral representation, Witt's type formula, explicit formula, multiplication formula, and recurrence formula for thesew-Genocchi polynomials.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Rybakov, Konstantin. "Features of the Expansion of Multiple Stochastic Stratonovich Integrals Using Walsh and Haar Functions". Differential Equations and Control Processes, n. 1 (2023): 137–50. http://dx.doi.org/10.21638/11701/spbu35.2023.109.

Testo completo
Abstract (sommario):
The problem of the root-mean-square convergence for approximations of multiple stochastic Stratonovich integrals based on the generalized multiple Fourier series method using Walsh and Haar functions is considered. It is shown that when they are chosen to expand multiple stochastic integrals, the proof of the root-mean-square convergence of a subsequence of series partial sums, which is formed in a way that is quite natural for these functions, does not require the explicit fulfillment of any additional conditions, except for the condition of the existence of the multiple stochastic Stratonovich integral.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Ciesielski, Mariusz, e Tomasz Blaszczyk. "The multiple composition of the left and right fractional Riemann-Liouville integrals - analytical and numerical calculations". Filomat 31, n. 19 (2017): 6087–99. http://dx.doi.org/10.2298/fil1719087c.

Testo completo
Abstract (sommario):
New fractional integral operators of order ? ? R+ are introduced. These operators are defined as the composition of the left and right (or the right and left) Riemann-Liouville fractional order integrals. Some of their properties are studied. Analytical results of fractional integrals of several functions are presented. For a numerical calculation of fractional order integrals, two numerical procedures are given. In the final part of this paper, examples of numerical evaluations of these operators of three different functions are shown in plots and the comparison of the numerical accuracy was analyzed in tables.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Lax, Peter D. "Change of Variables in Multiple Integrals". American Mathematical Monthly 106, n. 6 (giugno 1999): 497. http://dx.doi.org/10.2307/2589462.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Kałamajska, Agnieszka. "On lower semicontinuity of multiple integrals". Colloquium Mathematicum 74, n. 1 (1997): 71–78. http://dx.doi.org/10.4064/cm-74-1-71-78.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Kolomoitsev, Yurii, e Elijah Liflyand. "Absolute convergence of multiple Fourier integrals". Studia Mathematica 214, n. 1 (2013): 17–35. http://dx.doi.org/10.4064/sm214-1-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Tudor, Constantin, e Maria Tudor. "Power variation of multiple fractional integrals". Central European Journal of Mathematics 5, n. 2 (26 gennaio 2007): 358–72. http://dx.doi.org/10.2478/s11533-007-0001-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Gunawardena, K. L. D. "On the Evaluation of Multiple Integrals". Missouri Journal of Mathematical Sciences 6, n. 1 (febbraio 1994): 29–33. http://dx.doi.org/10.35834/1994/0601029.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Seel, Alexander, Frank Göhmann e Andreas Klümper. "From Multiple Integrals to Fredholm Determinants". Progress of Theoretical Physics Supplement 176 (2008): 375–83. http://dx.doi.org/10.1143/ptps.176.375.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Loiseau, Jean-Francis, Jean-Pierre Codaccioni e R{égis Caboz. "Hyperelliptic integrals and multiple hypergeometric series". Mathematics of Computation 50, n. 182 (1 maggio 1988): 501. http://dx.doi.org/10.1090/s0025-5718-1988-0929548-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Koyama, Shin-ya, e Nobushige Kurokawa. "Euler's integrals and multiple sine functions". Proceedings of the American Mathematical Society 133, n. 5 (1 maggio 2005): 1257–65. http://dx.doi.org/10.1090/s0002-9939-04-07863-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Tudor, Constantin, e Maria Tudor. "Approximation of Multiple Stratonovich Fractional Integrals". Stochastic Analysis and Applications 25, n. 4 (26 giugno 2007): 781–99. http://dx.doi.org/10.1080/07362990701419979.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Kloeden, P. E., E. Platen e I. W. Wright. "The approximation of multiple stochastic integrals". Stochastic Analysis and Applications 10, n. 4 (gennaio 1992): 431–41. http://dx.doi.org/10.1080/07362999208809281.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Miroshin, R. N. "On multiple integrals of special form". Mathematical Notes 82, n. 3-4 (ottobre 2007): 357–65. http://dx.doi.org/10.1134/s000143460709009x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Abel, Ulrich, e Vitaliy Kushnirevych. "Reducing Multiple Integrals of Beukers’s Type". American Mathematical Monthly 127, n. 10 (25 novembre 2020): 918–26. http://dx.doi.org/10.1080/00029890.2020.1815477.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Jones, Edwin R., e Richard L. Childers. "Helping students to recognize multiple integrals". American Journal of Physics 58, n. 10 (ottobre 1990): 904–5. http://dx.doi.org/10.1119/1.16294.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Peller, V. V. "Multiple operator integrals in perturbation theory". Bulletin of Mathematical Sciences 6, n. 1 (24 ottobre 2015): 15–88. http://dx.doi.org/10.1007/s13373-015-0073-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Carbonell, F., J. C. Jímenez e L. M. Pedroso. "Computing multiple integrals involving matrix exponentials". Journal of Computational and Applied Mathematics 213, n. 1 (marzo 2008): 300–305. http://dx.doi.org/10.1016/j.cam.2007.01.007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Fox, Robert, e Murad S. Taqqu. "Multiple stochastic integrals with dependent integrators". Journal of Multivariate Analysis 21, n. 1 (febbraio 1987): 105–27. http://dx.doi.org/10.1016/0047-259x(87)90101-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia