Letteratura scientifica selezionata sul tema "Multiple integrals"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Multiple integrals".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Multiple integrals"
Bandyrskii, B., L. Hoshko, I. Lazurchak e M. Melnyk. "Optimal algorithms for computing multiple integrals". Mathematical Modeling and Computing 4, n. 1 (1 luglio 2017): 1–9. http://dx.doi.org/10.23939/mmc2017.01.001.
Testo completoGreaves, G. R. H., R. R. Hall, M. N. Huxley e J. C. Wilson. "Multiple Franel integrals". Mathematika 40, n. 1 (giugno 1993): 51–70. http://dx.doi.org/10.1112/s0025579300013711.
Testo completoDynkin, E. B. "Multiple path integrals". Advances in Applied Mathematics 7, n. 2 (giugno 1986): 205–19. http://dx.doi.org/10.1016/0196-8858(86)90032-1.
Testo completoDasgupta, A., e G. Kallianpur. "Multiple fractional integrals". Probability Theory and Related Fields 115, n. 4 (1 novembre 1999): 505–25. http://dx.doi.org/10.1007/s004400050247.
Testo completoPapp, F. J. "Expressing certain multiple integrals as single integrals". International Journal of Mathematical Education in Science and Technology 21, n. 1 (marzo 1990): 137–39. http://dx.doi.org/10.1080/0020739900210120.
Testo completoBenabidallah, A., Y. Cherruault e Y. Tourbier. "Approximation of multiple integrals by simple integrals". Kybernetes 30, n. 9/10 (dicembre 2001): 1223–39. http://dx.doi.org/10.1108/03684920110405836.
Testo completoMalyutin, V. B., e B. O. Nurjanov. "The semiclassical approximation of multiple functional integrals". Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 59, n. 4 (5 gennaio 2024): 302–7. http://dx.doi.org/10.29235/1561-2430-2023-59-4-302-307.
Testo completoGreaves, G. R. H., R. R. Hall, M. N. Huxley e J. C. Wilson. "Multiple Franel integrals: Corrigendum". Mathematika 41, n. 2 (dicembre 1994): 401. http://dx.doi.org/10.1112/s0025579300007476.
Testo completoGrosjean, C. C. "Two Trigonometric Multiple Integrals". SIAM Review 33, n. 1 (marzo 1991): 114. http://dx.doi.org/10.1137/1033008.
Testo completoPodol’skii, A. A. "Identities for multiple integrals". Mathematical Notes 98, n. 3-4 (settembre 2015): 624–30. http://dx.doi.org/10.1134/s0001434615090291.
Testo completoTesi sul tema "Multiple integrals"
Rindone, Fabio. "New non-additive integrals in Multiple Criteria Decision Analysis". Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1315.
Testo completoZhang, Chengdian. "Calculus of variations with multiple integration". Bonn : [s.n.], 1989. http://catalog.hathitrust.org/api/volumes/oclc/20436929.html.
Testo completoHu, Dehui. "Understanding introductory students’ application of integrals in physics from multiple perspectives". Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16190.
Testo completoDepartment of Physics
N. Sanjay Rebello
Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that students often encounter in math classes. Research in physics education has reported students’ lack of ability to transfer their calculus knowledge to physics problem solving. In the past, studies often focused on what students fail to do with less focus on their underlying cognition. However, when solving physics problems requiring the use of integration, their reasoning about mathematics and physics concepts has not yet been carefully and systematically studied. Hence the main purpose of this qualitative study is to investigate student thinking in-depth and provide deeper insights into student reasoning in physics problem solving from multiple perspectives. I propose a conceptual framework by integrating aspects of several theoretical constructs from the literature to help us understand our observations of student work as they solve physics problems that require the use of integration. I combined elements of three important theoretical constructs: mathematical resources or symbolic forms, which are the small pieces of knowledge elements associated with students’ use of mathematical ideas; conceptual metaphors, which describe the systematic mapping of knowledge across multiple conceptual domains – typically from concrete source domain to abstract target domain; and conceptual blending, which describes the construction of new learning by integrating knowledge in different mental spaces. I collected data from group teaching/learning interviews as students solved physics problems requiring setting up integrals. Participants were recruited from a second-semester calculus-based physics course. I conducted qualitative analysis of the videotaped student conversations and their written work. The main contributions of this research include (1) providing evidence for the existence of symbolic forms in students’ reasoning about differentials and integrals, (2) identifying conceptual metaphors involved in student reasoning about differentials and integrals, (3) categorizing the different ways in which students integrate their mathematics and physics knowledge in the context of solving physics integration problems, (4)exploring the use of hypothetical debate problems in shifting students’ framing of physics problem solving requiring mathematics.
Richter, Gregor. "Iterated Integrals and genus-one open-string amplitudes". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19309.
Testo completoOver the last few decades the prevalence of multiple polylogarithms and multiple zeta values in low order Feynman diagram computations of quantum field theory has received increased attention, revealing a link to the mathematical theories of Chen’s iterated integrals and periods. More recently, a similar ubiquity of multiple zeta values was observed in the α'-expansion of genus-zero string theory amplitudes. Inspired by these developments, this work is concerned with the systematic appearance of iterated integrals in scattering amplitudes of open superstring theory. In particular, the focus will be on studying the genus-one amplitude, which requires the notion of iterated integrals defined on punctured elliptic curves. We introduce the notion of twisted elliptic multiple zeta values that are defined as a class of iterated integrals naturally associated to an elliptic curve with a rational lattice removed. Subsequently, we establish an initial value problem that determines the expansions of twisted elliptic multiple zeta values in terms of the modular parameter τ of the elliptic curve. Any twisted elliptic multiple zeta value degenerates to cyclotomic multiple zeta values at the cusp τ → i∞, with the corresponding limit serving as the initial condition of the initial value problem. Finally, we describe how to express genus-one open-string amplitudes in terms of twisted elliptic multiple zeta values and study the four-point genus-one open-string amplitude as an example. For this example we find that up to third order in α' all possible contributions in fact belong to the subclass formed by elliptic multiple zeta values, which is equivalent to the absence of unphysical poles in Gliozzi-Scherk-Olive projected superstring theory.
Yam, Sheung Chi Phillip. "Analytical and topological aspects of signatures". Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:87892930-f329-4431-bcdc-bf32b0b1a7c6.
Testo completoShahrokhi-Dehkordi, Mohammad Sadegh. "Topological methods for strong local minimizers and extremals of multiple integrals in the calculus of variations". Thesis, University of Sussex, 2011. http://sro.sussex.ac.uk/id/eprint/6913/.
Testo completoSinescu, Vasile. "Construction of lattice rules for multiple integration based on a weighted discrepancy". The University of Waikato, 2008. http://hdl.handle.net/10289/2542.
Testo completoHanna, George T. "Cubature rules from a generalized Taylor perspective". Thesis, full-text, 2009. https://vuir.vu.edu.au/1922/.
Testo completoHanna, George T. "Cubature rules from a generalized Taylor perspective". full-text, 2009. http://eprints.vu.edu.au/1922/1/hanna.pdf.
Testo completoCoine, Clément. "Continuous linear and bilinear Schur multipliers and applications to perturbation theory". Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD074/document.
Testo completoIn the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems
Libri sul tema "Multiple integrals"
Major, Péter. Multiple Wiener-Itô Integrals. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02642-8.
Testo completoBraides, Andrea. Homogenization of multiple integrals. Oxford: Clarendon Press, 1998.
Cerca il testo completoSpandagos, Vaggelēs. Oloklērōtikos logismos: Theōria-methodologia, 1600 lymenes askēseis. Athēna: Aithra, 1988.
Cerca il testo completoSmirnov, V. A. Analytic tools for Feynman integrals. Heidelberg: Springer, 2012.
Cerca il testo completoSloan, I. H. Lattice methods for multiple integration. Oxford: Clarendon Press, 1994.
Cerca il testo completoservice), SpringerLink (Online, a cura di. Multiple Integrals in the Calculus of Variations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Cerca il testo completoRaphael, Höegh-Krohn, e Mazzucchi Sonia, a cura di. Mathematical theory of Feynman path integrals: An introduction. 2a ed. Berlin: Springer, 2008.
Cerca il testo completoKwapień, Stanisław, e Wojbor A. Woyczyński. Random Series and Stochastic Integrals: Single and Multiple. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0425-1.
Testo completo1943-, Woyczyński W. A., a cura di. Random series and stochastic integrals: Single and multiple. Boston: Birkhäuser, 1992.
Cerca il testo completoKorobov, N. M. Teoretikochislovye metody v priblizhennom analize. 2a ed. Moskva: MT︠S︡NMO, 2004.
Cerca il testo completoCapitoli di libri sul tema "Multiple integrals"
Coombes, Kevin R., Ronald L. Lipsman e Jonathan M. Rosenberg. "Multiple Integrals". In Multivariable Calculus and Mattiematica®, 153–83. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1698-8_8.
Testo completoShakarchi, Rami. "Multiple Integrals". In Problems and Solutions for Undergraduate Analysis, 337–58. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1738-1_21.
Testo completoLang, Serge. "Multiple Integrals". In Undergraduate Analysis, 565–606. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2698-5_21.
Testo completoCourant, Richard, e Fritz John. "Multiple Integrals". In Introduction to Calculus and Analysis Volume II/1, 367–542. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57149-7_4.
Testo completoMarshall, Gordon S. "Multiple Integrals". In Springer Undergraduate Mathematics Series, 127–36. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-3412-1_8.
Testo completoEriksson, Kenneth, Claes Johnson e Donald Estep. "Multiple Integrals". In Applied Mathematics: Body and Soul, 939–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05800-8_13.
Testo completoCourant, Richard, e Fritz John. "Multiple Integrals". In Introduction to Calculus and Analysis, 367–542. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8958-3_4.
Testo completoStroud, K. A. "Multiple Integrals". In Further Engineering Mathematics, 433–96. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20731-2_9.
Testo completoZorich, Vladimir A. "Multiple Integrals". In Universitext, 109–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48993-2_3.
Testo completoStroud, K. A. "Multiple Integrals". In Engineering Mathematics, 662–88. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-18708-9_23.
Testo completoAtti di convegni sul tema "Multiple integrals"
Georgiev, S. "Multiple iso-integrals". In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912715.
Testo completoShakeshaft, Robin. "Theoretical aspects of above-threshold absorption". In Multiple Excitations of Atoms. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/mea.1986.mb1.
Testo completoLequn Hu, Derek T. Anderson e Timothy C. Havens. "Multiple kernel aggregation using fuzzy integrals". In 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622312.
Testo completoChaloupka, Jan, Jiří Kunovský, Václav Šátek, Petr Veigend e Alžbeta Martinkovičová. "Numerical Integration of Multiple Integrals using Taylor Polynomial". In 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005539701630171.
Testo completoWeinzierl, Stefan, Luise Adams, Christian Bogner, Ekta Chaubey e Armin Schweitzer. "Differential equations for Feynman integrals beyond multiple polylogarithms". In 13th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology). Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.290.0015.
Testo completoYu, Chii-Huei. "Application of maple on evaluating multiple improper integrals". In 2013 6th International Conference on Advanced Infocomm Technology (ICAIT). IEEE, 2013. http://dx.doi.org/10.1109/icait.2013.6621489.
Testo completoKnockaert, L. "On the analytic calculation of multiple integrals in electromagnetics". In Propagation in Wireless Communications (ICEAA). IEEE, 2011. http://dx.doi.org/10.1109/iceaa.2011.6046406.
Testo completoBonaventura, A., L. Coluccio e G. Fedele. "Frequency estimation of multi-sinusoidal signal by multiple integrals". In 2007 IEEE International Symposium on Signal Processing and Information Technology. IEEE, 2007. http://dx.doi.org/10.1109/isspit.2007.4458175.
Testo completoBroedel, Johannes. "From elliptic iterated integrals to elliptic multiple zeta values". In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.260.0081.
Testo completoGluza, Janusz. "Non-planar Feynman integrals, Mellin-Barnes representations, multiple sums". In Loops and Legs in Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.211.0052.
Testo completoRapporti di organizzazioni sul tema "Multiple integrals"
Perez-Abreu, Victor. Multiple Wiener Integrals and Nonlinear Functionals of a Nuclear Space Valued Wiener Process. Fort Belvoir, VA: Defense Technical Information Center, ottobre 1986. http://dx.doi.org/10.21236/ada177227.
Testo completoBrigola, R. Remark on the Multiple Wiener Integral. Fort Belvoir, VA: Defense Technical Information Center, marzo 1987. http://dx.doi.org/10.21236/ada186015.
Testo completoBright, Gerald D., Robert S. Mandry e Mark D. Barnell. Innovative Approach to Fusion Testbed to Integrate Multiple Sensor Data. Fort Belvoir, VA: Defense Technical Information Center, luglio 1995. http://dx.doi.org/10.21236/ada299800.
Testo completoSamorodnitsky, Gennady, e Jerzy Szulga. An Asymptotic Evaluation of the Tail of a Multiple Symmetric Alpha-Stable Integral. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1988. http://dx.doi.org/10.21236/ada194570.
Testo completoLandweber, Louis. Residues of Integrals with Three-Dimensional Multipole Singularities, with Application to the Lagally Theorem. Fort Belvoir, VA: Defense Technical Information Center, luglio 1985. http://dx.doi.org/10.21236/ada158771.
Testo completoHarris e Edlund. L51766 Instantaneous Rotational Velocity Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), maggio 1997. http://dx.doi.org/10.55274/r0010119.
Testo completoBrakarz, José, e Laura Jaitman. Evaluation of Slum Upgrading Programs: Literature Review and Methodological Approaches. Inter-American Development Bank, dicembre 2013. http://dx.doi.org/10.18235/0009149.
Testo completoMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/9egp6tqy3koga469.
Testo completoMoeyaert, Mariola. Introduction to Meta-Analysis. Instats Inc., 2023. http://dx.doi.org/10.61700/z1ui6nlaom67q469.
Testo completoLee, Jin-Kyu, Amir Naser, Osama Ennasr, Ahmet Soylemezoglu, e Garry Glaspell. Unmanned ground vehicle (UGV) full coverage planning with negative obstacles. Engineer Research and Development Center (U.S.), agosto 2023. http://dx.doi.org/10.21079/11681/47527.
Testo completo