Letteratura scientifica selezionata sul tema "Multiparameter and Wireless measurement"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Multiparameter and Wireless measurement".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Multiparameter and Wireless measurement"
Sancho, Juan Ignacio, Noemí Perez, Joaquin De Nó e Jaizki Mendizabal. "Implementation of Simultaneous Multi-Parameter Monitoring Based in LC-Type Passive Wireless Sensing with Partial Overlapping and Decoupling Coils". Sensors 19, n. 23 (26 novembre 2019): 5183. http://dx.doi.org/10.3390/s19235183.
Testo completoYang, Bensheng, Peize Zhang, Haiming Wang, Cheng-Xiang Wang e Xiaohu You. "Broadband Extended Array Response-Based Subspace Multiparameter Estimation Method for Multipolarized Wireless Channel Measurements". IEEE Transactions on Communications 69, n. 5 (maggio 2021): 3298–312. http://dx.doi.org/10.1109/tcomm.2021.3058372.
Testo completoKhadri, Shruthi, Naveen K Bhoganna e Madam Aravind Kumar. "Biomedical signal compression using deep learning based multi-task compressed sensing". Indonesian Journal of Electrical Engineering and Computer Science 33, n. 1 (1 gennaio 2024): 63. http://dx.doi.org/10.11591/ijeecs.v33.i1.pp63-70.
Testo completoKuncoro, C. Bambang Dwi, Aurelia Amaris e Arvanida Feizal Permana. "Smart Wireless CO2 Sensor Node for IoT Based Strategic Monitoring Tool of The Risk of The Indoor SARS-CoV-2 Airborne Transmission". Applied Sciences 12, n. 21 (25 ottobre 2022): 10784. http://dx.doi.org/10.3390/app122110784.
Testo completoNеbylytsia, Mykola, e Oleksandr Boiko. "Multiparametric assessment of the microclimate of livestock premises by the method of continuous automatic registration". Pig breeding the interdepartmental subject scientific digest, n. 77-78 (15 dicembre 2022): 106–16. http://dx.doi.org/10.37143/0371-4365-2022-77-78-09.
Testo completoStrakhov, A. F. "Multiparameter Measurement Systems". Measurement Techniques 48, n. 4 (aprile 2005): 315–21. http://dx.doi.org/10.1007/s11018-005-0143-8.
Testo completoShamshin, V. N. "Adjusting multiparameter measurement systems". Measurement Techniques 30, n. 2 (febbraio 1987): 115–18. http://dx.doi.org/10.1007/bf00865853.
Testo completoLi, Feifei. "Farmland Multiparameter Wireless Sensor Network Data Compression Strategy". International Journal of Ad Hoc and Ubiquitous Computing 1, n. 1 (2017): 1. http://dx.doi.org/10.1504/ijahuc.2017.10007545.
Testo completoGorgucci, Eugenio, V. Chandrasekar e Gianfranco Scarchilli. "Radar and Surface Measurement of Rainfall during CaPE: 26 July 1991 Case Study". Journal of Applied Meteorology 34, n. 7 (1 luglio 1995): 1570–77. http://dx.doi.org/10.1175/1520-0450-34.7.1570.
Testo completoMiyazaki, Jisho, e Keiji Matsumoto. "Imaginarity-free quantum multiparameter estimation". Quantum 6 (10 marzo 2022): 665. http://dx.doi.org/10.22331/q-2022-03-10-665.
Testo completoTesi sul tema "Multiparameter and Wireless measurement"
Henderson, Philip James. "Chromatic modulation systems for multiparameter measurement in physically demanding environments". Thesis, University of Liverpool, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257163.
Testo completoMarbouh, Othmane. "Capteurs à ondes acoustiques de surface pour la caractérisation multiphysique des propriétés des tôles ferromagnétiques dans les machines électriques de fortes puissances". Electronic Thesis or Diss., Centrale Lille Institut, 2024. http://www.theses.fr/2024CLIL0019.
Testo completoHigh-power electrical machines are subjected to severe mechanical, thermal, and magnetic stresses during operation. To ensure their reliability and continuous operation, it is crucial to have real-time information on these constraints, often at a local scale. Wireless and battery-free sensor technologies, combined with effective data analysis and signal processing techniques, are essential to meet this need. Surface acoustic waves (SAW) allow the design of wireless and completely passive sensors capable of measuring various physical quantities such as temperature, mechanical stress, and magnetic fields, thanks to advanced design engineering. The work carried out in this thesis has enabled the development of multi-quantity SAW sensors for measuring deformations, temperature, and magnetic fields. These sensors were first calibrated on laboratory test benches and then used to characterize the mechanical properties, such as magnetostriction, and magnetic properties, such as magnetic losses, of ferromagnetic sheets used in the design of high-power electrical machines. Characterizing the properties of ferromagnetic sheets is crucial for several reasons: designing efficient electromagnetic systems, minimizing vibrations and unwanted noise, controlling energy dissipation, preventing material fatigue, optimizing component design for energy efficiency, and developing heat-resistant components for reliability and durability. The thesis project involves JEUMONT Electric (a high-tech company specializing in energy conversion solutions), the AIMAN-FILMS group from IEMN, and the Numerical Tools and Methods team from L2EP. Each partner brings specific expertise to address the multi-physical instrumentation of high-power electrical machines
Naqvi, Syeda Samana. "Packet level measurement over wireless access". Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1321.
Testo completoÖdman, Torbjörn. "Wireless measurement systems for health and safety". Licentiate thesis, Mälardalens högskola, Inbyggda system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-28765.
Testo completoKaplan, Shaun. "A wireless sensor network for vibration measurement". Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11424.
Testo completoLam, Ee Beng. "42 GHz multimedia wireless system : measurement and analysis". Thesis, Nottingham Trent University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401469.
Testo completoFriedlander, Jeffrey B. "Wireless Strain Measurement with Surface Acoustic Wave Sensors". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306874020.
Testo completoTrubilowicz, Joel William. "Using motes for high resolution hydrological measurement". Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/633.
Testo completoRashid, Muhammad, e Mumtaz Mutarraf. "Remote Surveillance and Measurement". Thesis, Halmstad University, School of Information Science, Computer and Electrical Engineering (IDE), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-2196.
Testo completoWireless Sensor Network (WSN), a collection of “sensor nodes” promises to change the scientist’s approach of gathering the environmental data in various fields. Sensor nodes can be used for non-stop sensing, event detection, location sensing and local control of actuators, this concept gives surety to many latest application areas like agriculture, military, home or factory automation, logistics and so on. Remote surveillance and measurement missions can be performed by using WSNs. The hot research topic now-a-days is to make such networks remotely controllable and adaptive to the environment and mission.
The work carried out in this thesis is the development of a surveillance application using TinyOS/nesC. The purpose of this application is to perform event-detection mission by using any one of the built-in sensor on Mica2 motes as well as a setup protocol is designed to make the WSN remotely controllable and adaptive to the mission. In this thesis, an experimental work is also performed using TinyDB to build up a surveillance system whose purpose is to detect and count the total number of person present at any time in a given room and to view the results at a remote place. Besides these two system applications, a comparative study between TinyDB and nesC is described which concludes that more hardware control can be achieved through nesC which is a more power efficient platform for long-term applications.
Mella, Kristian. "Theory, Simulation and Measurement of Wireless Multipath Fading Channels". Thesis, Norwegian University of Science and Technology, Department of Electronics and Telecommunications, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8713.
Testo completoMultipath fading is a very common phenomenon in signal transmission over wireless channels. When a signal is transmitted over multipath channels, it is subject to reflection, diffraction and refraction. This results in multiple versions of the same signal to arrive at the receiver, each of which has suffered from various path loss, time-delay, phase shift and often also frequency shift. The latter is a result of Doppler shifts, which is experienced whenever a relative movement between the receiver and transmitter or scatterers is present. The communication environment changes quickly over location or time, thus introducing uncertainties to the channel response. Such channels result in increased system complexity, and the propagation effects need to be identified in order to predict the channel behaviour. Path loss is experienced in all types of radio channels, and its metrics are often determined by empirical path loss models. The path loss effects the mean received signal level, whereas large-scale fading (Shadowing) results in large-scale fluctuations of this received level. These variations are superimposed by the small-scale fluctuations, or small-scale fading, caused by multipath reception and Doppler shifts. Small-scale fading is simulated to gain a better understanding of these effects. In order to observe these effects satisfactory, the whole digital radio communication system chain must be simulated. Simulations are also performed for estimating the data capacity over both mobile and fixed multipath channels, and the resulting capacity of multipath reception exceeds the capacity of a flat channel due to increased received energy. In order to classify the effect of multipath channels on signal transmission, the profile of the channel for a given scenario has to be known, i.e. channel metrics such as the RMS delay spread is essential for a successful radio system design. A multipath channel profile and its RMS delay spread can be derived from a vast number of channel measurements performed for a given scenario. Measurements on the multipath channel impulse response have been performed, RMS delay spread has been calculated, and the procedure of the channel measurement process itself is simulated in Matlab.
Libri sul tema "Multiparameter and Wireless measurement"
Rumney, Moray. LTE and the evolution to 4G wireless: Design and measurement challenges. Chichester, West Sussex, United Kingdom: John Wiley & Sons, 2013.
Cerca il testo completoHarry, Skinner, e ScienceDirect (Online service), a cura di. Platform interference in wireless systems: Models, measurement, and mitigation. Amsterdam: Newnes/Elsevier, 2008.
Cerca il testo completoFrost & Sullivan., a cura di. Anesthesia and gas monitoring equipment markets: Rapid transition to multiparameter integration and open systems. Mountain View, CA: Market Intelligence USA, 1992.
Cerca il testo completoKreher, Ralf. UMTS Performance Measurement. New York: John Wiley & Sons, Ltd., 2006.
Cerca il testo completoKarppinen, Kaarina. Security measurement based on attack trees in a mobile ad hoc network environment. [Espoo, Finland]: VTT Technical Research Centre of Finland, 2005.
Cerca il testo completoDenjiha Sekyuriti o Kakuhosuru Tame no Kōkando Denjiha Sokutei Gijutsu no Kenkyū Kaihatsu Purojekuto. e Jōhō Tsūshin Kenkyū Kikō (Japan), a cura di. Heisei 18-nendo Denjiha Sekyuriti o Kakuhosuru Tame no Kōkando Denjiha Sokutei Gijutsu no Kenkyū Kaihatsu Purojekuto kenkyū kaihatsu hōkokusho. Tōkyō-to Koganei-shi: Jōhō Tsūshin Kenkyū Kikō, 2007.
Cerca il testo completoYŏnʼguwŏn, Hanʼguk Chŏnja Tʻongsin, e Korea (South) Chŏngbo Tʻongsinbu, a cura di. Sŏngchʻŭngkwŏn tʻongsin sisŭtʻem kisul kijun mit haeksim yoso kisul kaebal =: Standardization and development of core technology for stratospheric communication system. [Taejŏn Kwangyŏksi]: ETRI, 2005.
Cerca il testo completoOhio) ARFTG Conference (82nd 2013 Columbus. 2013 82nd ARFTG Microwave Measurement Conference: Columbus, Ohio, USA, 18-21 November 2013. Piscataway, NJ: IEEE, 2013.
Cerca il testo completoDr, Smith Garry, Hodgins David Ph D e Williams Robert Dr, a cura di. Research and measurement issues in gambling studies. Burlington, MA: Elsevier, 2007.
Cerca il testo completoACM, International Workshop on Performance Monitoring Measurement &. Evaluation of Heterogeneous Wireless and Wired Networks (2nd 2007 Chania Crete Island Greece). PM²HW²Nʹ07: Proceedings of the 2nd ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks : Chania, Crete Island, Greece, October 22, 2007. New York, N.Y: Association for Computing Machinery, 2007.
Cerca il testo completoCapitoli di libri sul tema "Multiparameter and Wireless measurement"
Chen, Shigang, Min Chen e Qingjun Xiao. "Persistent Spread Measurement". In Wireless Networks, 77–104. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47340-6_4.
Testo completoChen, Shigang, Min Chen e Qingjun Xiao. "Per-Flow Size Measurement". In Wireless Networks, 11–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47340-6_2.
Testo completoChen, Shigang, Min Chen e Qingjun Xiao. "Per-Flow Cardinality Measurement". In Wireless Networks, 47–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47340-6_3.
Testo completoShi, Gaotao, e Keqiu Li. "Interference Model and Measurement". In Wireless Networks, 29–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47806-7_3.
Testo completoYang, Yang, Jing Xu, Guang Shi e Cheng-Xiang Wang. "Channel Measurement and Modeling". In 5G Wireless Systems, 45–156. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61869-2_3.
Testo completoHe, Ruisi, e Bo Ai. "Wireless Channel Measurement Technology". In Wireless Channel Measurement and Modeling in Mobile Communication Scenario, 32–49. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781032669793-2.
Testo completoSyrigos, Ilias, Stratos Keranidis, Thanasis Korakis e Constantine Dovrolis. "Enabling Wireless LAN Troubleshooting". In Passive and Active Measurement, 318–31. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15509-8_24.
Testo completoHe, Xiaoming, e Kun Wang. "Data-Driven QoE Measurement". In Encyclopedia of Wireless Networks, 296–99. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_89.
Testo completoHe, Xiaoming, e Kun Wang. "Data-Driven QoE Measurement". In Encyclopedia of Wireless Networks, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-32903-1_89-1.
Testo completoLi, Juan, Shushi Gu, Ye Wang, Yue Li e Qinyu Zhang. "Multiparameter Analysis for Distributed Storage Schemes in Wireless D2D Networks". In Lecture Notes in Electrical Engineering, 376–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6264-4_46.
Testo completoAtti di convegni sul tema "Multiparameter and Wireless measurement"
Luo, Chuansheng, Chunlei Li, Linli Cui, Zhengyuxi Su, Shufeng Xu e Lei Huang. "Construction and implementation of single substrate for multiparameter surface acoustic wave measurement sensor". In 6th International Conference on Optoelectronic Science and Materials (ICOSM 2024), a cura di Yuan Lu, Yonghong Wang e Chongwen Zou, 32. SPIE, 2024. https://doi.org/10.1117/12.3052716.
Testo completoDochev, Marin, Ivo Dochev, Lilyana Docheva e Stoycho Manev. "Wireless Measurement Station Using Arduino". In 2024 32nd National Conference with International Participation (TELECOM), 1–4. IEEE, 2024. https://doi.org/10.1109/telecom63374.2024.10812329.
Testo completoPeng, Rong, Zhanyi Fu, Jie Ma e Fei Yang. "Ultra-Low Residual Phase Noise Measurement of Microwave Amplifiers Using Interferometric Measurement System". In 2024 IEEE MTT-S International Wireless Symposium (IWS), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/iws61525.2024.10713672.
Testo completoGessner, M., L. Pezzè e A. Smerzi. "Sensitivity Limits for Multiparameter Quantum Metrology". In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.s3b.4.
Testo completoAlbarelli, Francesco, e Rafal Demkowicz-Dobrzanski. "Probe Incompatibility in Multiparameter Noisy Quantum Channel Estimation". In Quantum Information and Measurement. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/qim.2021.w2a.1.
Testo completoRousselot, Jerome, e Jean-Dominique Decotignie. "Wireless communication systems for continuous multiparameter health monitoring". In 2009 IEEE International Conference on Ultra-Wideband. IEEE, 2009. http://dx.doi.org/10.1109/icuwb.2009.5288747.
Testo completoLiu, Shixing, Defeng Tu e Yongming Zhang. "Multiparameter fire detection based on wireless sensor network". In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icicisys.2009.5358197.
Testo completoImazawa, Ryota, Yasunori Kawano, Kiyoshi Itami e Yoshinori Kusama. "Multiparameter measurement utilizing poloidal polarimeter for burning plasma reactor". In FUSION REACTOR DIAGNOSTICS: Proceedings of the International Conference. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4894025.
Testo completoWarsza, Zygmunt Lech, e Jacek Puchalski. "Estimation of Uncertainties in Indirect Multiparameter Measurements of Correlated Quantities". In 2019 12th International Conference on Measurement. IEEE, 2019. http://dx.doi.org/10.23919/measurement47340.2019.8780042.
Testo completo"Hydrometeor discrimination in melting layer using multiparameter airborne radar measurement". In Geoscience and Remote Sensing Symposium, 1992. IGARSS '92. International. IEEE, 1992. http://dx.doi.org/10.1109/igarss.1992.578852.
Testo completoRapporti di organizzazioni sul tema "Multiparameter and Wireless measurement"
Jargon, Jeffrey A. Measurement comparison of a low-intermodulation termination for the U.S. wireless industry. Gaithersburg, MD: National Bureau of Standards, 2001. http://dx.doi.org/10.6028/nist.tn.1521.
Testo completoKwun, H. L51694 Investigation of Techniques for Bulk Stress Measurement on Exposed Pipelines-Phases I and II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), ottobre 1993. http://dx.doi.org/10.55274/r0010318.
Testo completoLukac, Martin, Nithya Ramanathan e Eric Graham. Final Report: Wireless Instrument for Automated Measurement of Clean Cookstove Usage and Black Carbon Emissions. Office of Scientific and Technical Information (OSTI), settembre 2013. http://dx.doi.org/10.2172/1092422.
Testo completoTechnology News 544 - new measurement tool to validate wireless communications and tracking radio signal coverage in mines. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, ottobre 2011. http://dx.doi.org/10.26616/nioshpub2012100.
Testo completo