Tesi sul tema "Mobile laser scanner (MLS)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-23 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Mobile laser scanner (MLS)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Gourguechon, Camille. "Création et mise à jour de maquettes numériques de bâtiments (BIM) à partir de nuages de points issus de scanners laser dynamiques . : focus sur les environnements intérieurs". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD019.
Testo completoDriven by the need for more efficient and sustainable design and management, BIM (Building Information Modelling) is expanding across the entire building industry. However, despite the advent of laser scanners for indoor surveys, the adoption of BIM in existing buildings is hampered by the difficulties of creating and updating models, which are tedious and time-consuming tasks performed mainly manually. This is the background to this thesis, which aims to automate the process of modelling buildings using point clouds and detecting geometric changes in existing digital models. The challenge is twofold, in considering in particular the point clouds from dynamic laser scanners, which are reputed more complex to deal with than those from static scanners but are also increasingly common due to the wide adoption of these sensors by professionals
Nalani, Hetti Arachchige. "Automatic Reconstruction of Urban Objects from Mobile Laser Scanner Data". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-159872.
Testo completoUp-to-date 3D urban models are becoming increasingly important in various urban application areas, such as urban planning, virtual tourism, and navigation systems. Many of these applications often demand the modelling of 3D buildings, enriched with façade information, and also single trees among other urban objects. Nowadays, Mobile Laser Scanning (MLS) technique is being progressively used to capture objects in urban settings, thus becoming a leading data source for the modelling of these two urban objects. The 3D point clouds of urban scenes consist of large amounts of data representing numerous objects with significant size variability, complex and incomplete structures, and holes (noise and data gaps) or variable point densities. For this reason, novel strategies on processing of mobile laser scanning point clouds, in terms of the extraction and modelling of salient façade structures and trees, are of vital importance. The present study proposes two new methods for the reconstruction of building façades and the extraction of trees from MLS point clouds. The first method aims at the reconstruction of building façades with explicit semantic information such as windows, doors and balconies. It runs automatically during all processing steps. For this purpose, several algorithms are introduced based on the general knowledge on the geometric shape and structural arrangement of façade features. The initial classification has been performed using a local height histogram analysis together with a planar growing method, which allows for classifying points as object and ground points. The point cloud that has been labelled as object points is segmented into planar surfaces that could be regarded as the main entity in the feature recognition process. Knowledge of the building structure is used to define rules and constraints, which provide essential guidance for recognizing façade features and reconstructing their geometric models. In order to recognise features on a wall such as windows and doors, a hole-based method is implemented. Some holes that resulted from occlusion could subsequently be eliminated by means of a new rule-based algorithm. Boundary segments of a feature are connected into a polygon representing the geometric model by introducing a primitive shape based method, in which topological relations are analysed taking into account the prior knowledge about the primitive shapes. Possible outlines are determined from the edge points detected from the angle-based method. The repetitive patterns and similarities are exploited to rectify geometrical and topological inaccuracies of the reconstructed models. Apart from developing the 3D façade model reconstruction scheme, the research focuses on individual tree segmentation and derivation of attributes of urban trees. The second method aims at extracting individual trees from the remaining point clouds. Knowledge about trees specially pertaining to urban areas is used in the process of tree extraction. An innovative shape based approach is developed to transfer this knowledge to machine language. The usage of principal direction for identifying stems is introduced, which consists of searching point segments representing a tree stem. The output of the algorithm is, segmented individual trees that can be used to derive accurate information about the size and locations of each individual tree. The reliability of the two methods is verified against three different data sets obtained from different laser scanner systems. The results of both methods are quantitatively evaluated using a set of measures pertaining to the quality of the façade reconstruction and tree extraction. The performance of the developed algorithms referring to the façade reconstruction, tree stem detection and the delineation of individual tree crowns as well as their limitations are discussed. The results show that MLS point clouds are suited to document urban objects rich in details. From the obtained results, accurate measurements of the most important attributes relevant to the both objects (building façades and trees), such as window height and width, area, stem diameter, tree height, and crown area are obtained acceptably. The entire approach is suitable for the reconstruction of building façades and for the extracting trees correctly from other various urban objects, especially pole-like objects. Therefore, both methods are feasible to cope with data of heterogeneous quality. In addition, they provide flexible frameworks, from which many extensions can be envisioned
Colaço, André Freitas. "Mobile terrestrial laser scanner for site-specific management in orange crop". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-23012017-151317/.
Testo completoSensores baseados em tecnologia LiDAR (Light Detection and Ranging) têm o potencial de fornecer modelos tridimensionais de árvores, provendo informações como o volume e altura de copa. Essas informações podem ser utilizadas em diagnósticos e recomendações localizadas de fertilizantes e defensivos agrícolas. Este estudo teve como objetivo investigar o uso de sensores LiDAR na cultura da laranja, uma das principais culturas de porte arbóreo no Brasil. Diversas pesquisas têm desenvolvido sistemas LiDAR para culturas arbóreas. Porém, normalmente tais sistemas são empregados em plantas individuais ou em pequenas áreas. Dessa forma, diversos aspectos da aquisição e processamento de dados ainda devem ser desenvolvidos para viabilizar a aplicação em larga escala. O primeiro estudo deste documento (Capítulo 3) focou no desenvolvimento de um sistema LiDAR (Mobile Terrestrial Laser Scanner - MTLS) e nova metodologia de processamento de dados para obtenção de informações acerca da geometria das copas em pomares comerciais de laranja. Um sensor a laser e um receptor RTK-GNSS (Real Time Kinematics - Global Navigation Satellite System) foram instalados em um veículo para leituras em campo. O processamento de dados foi baseado na geração de uma nuvem de pontos, seguida dos passos de filtragem, classificação e reconstrução da superfície das copas. Um pomar comercial de laranja de 25 ha foi utilizado para a validação. O sistema de aquisição e processamento de dados foi capaz de produzir uma nuvem de pontos representativa do pomar, fornecendo informação sobre geometria das plantas em alta resolução. A escolha sobre o tipo de classificação da nuvem de pontos (em plantas individuais ou em seções transversais das fileiras) e sobre o algoritmo de reconstrução de superfície, foi discutida nesse estudo. O segundo estudo (Capítulo 4) buscou caracterizar a variabilidade espacial da geometria de copa em pomares comerciais. Entender tal variabilidade permite avaliar se a aplicação em taxas variáveis de insumos baseada em sensores LiDAR (aplicar quantias de insumos proporcionais ao tamanho das copas) é uma estratégia adequada para otimizar o uso de insumos. Cinco pomares comerciais foram avaliados com o sistema MTLS. De acordo com a variabilidade encontrada, a economia de insumos pelo uso da taxa variável foi estimada em aproximadamente 40%. O segundo objetivo desse estudo foi avaliar a relação entre a geometria de copa e diversos outros parâmetros dos pomares. Os mapas de volume e altura de copa foram comparados aos mapas de produtividade, elevação, condutividade elétrica do solo, matéria orgânica e textura do solo. As correlações entre geometria de copa e produtividade ou fatores de solo variaram de fraca até forte, dependendo do pomar. Quando os pomares foram divididos entre três classes com diferentes tamanhos de copas, o desempenho em produtividade e as características do solo foram distintas entre as três zonas, indicando que parâmetros de geometria de copa são variáveis úteis para a delimitação de unidades de gestão diferenciada em um pomar. Os resultados gerais desta pesquisa mostraram o potencial de sistemas MTLS para pomares de laranja, indicando como a geometria de copa pode ser utilizada na gestão localizada de pomares de laranja.
Vock, Dominik. "Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-141582.
Testo completoAlshawa, Majd. "Contribution à la cartographie mobile : développement et caractérisation d’un système basé sur un scanner laser terrestre". Strasbourg, 2009. https://publication-theses.unistra.fr/public/theses_doctorat/2010/ALSHAWA_Majd_2010.pdf.
Testo completoMobile mapping technology has been developing with the growing demand of three-dimensional urban and peri-urban data. This thesis approach is based on the design of a low cost terrestrial mobile mapping system with the adaptation of a Terrestrial Laser Scanner for low dynamics. Our goal is not to compete in performance with commercial systems but rather to appropriate scientific and technological skills which will help in proposing solutions in the field of mobile mapping. Necessary operational settings, such as synchronization and calibration are explained. Then, some methods based on the adjustment of polynomial models are developed according to the traveled paths. Data from various sensors (GPS/ AHRS/TLS) are filtered and tested before their integration by direct georeferencing equation in order to produce a correct point cloud. A comprehensive study on the influence of errors of each sensor on the resulting point cloud is established. The theoretical precision is compared with reference data in order to validate the error analyze. A digital calibrated camera is integrated in the system as a navigation sensor. A photogrammetric solution is proposed to improve the accuracy of the orientation and the position calculated by integrating GPS/ AHRS. At the end of this thesis, an approach towards automatic modeling is proposed to make use of the geometry and precision provided by the system. The designed prototype supplies point clouds whose precision is about 10 to15 cm at the average distance of 20 m
Rascão, Madalena da Silva Ruivo Coreixas. "Aquisição de dados LiDAR com TLS e HMLS para deteção de árvores individuais". Master's thesis, ISA, 2019. http://hdl.handle.net/10400.5/21291.
Testo completoLiDAR (Light Detection And Ranging) é um sistema baseado nos princípios de Deteção Remota que permite medir distâncias com base no tempo da trajetória da radiação laser, desde que é emitida pelo aparelho até que retorna ao recetor depois de ser refletida numa superfície sólida. A aplicabilidade deste sistema é abrangente a várias áreas da engenharia e prende-se com a capacidade que o mesmo tem de recolher e armazenar dados tridimensionais em forma de nuvens de pontos de qualquer objeto sólido sobre a superfície terrestre. No sector florestal, este sistema permite estimar características dos povoamentos e digitalizar uma extensa área de floresta, de uma forma automatizada, rápida e com detalhe na ordem dos milímetros. O objetivo do presente trabalho é avaliar a capacidade do sistema LiDAR na individualização da árvore comparando as coordenadas estimadas obtidas com dois métodos LiDAR - HMLS (Held-Hand Mobile Laser Scanner) e TLS (Terrestrial Taser Scanner) - com as coordenadas obtidas com GPS sub-métrico, pelo método tradicional de campo, num ensaio clonal de Eucalyptus globulus Labill. com 10 anos de idade. O presente estudo serviu também como primeira abordagem ao desempenho dos dois métodos LiDAR na obtenção de diâmetros às várias alturas do tronco, recorrendo aos algoritmos disponíveis no software R. Para a deteção das árvores individuais, os resultados demonstraram que, em média, o método TLS detetou 65,1% das árvores, enquanto o método HMLS detetou 44,7% das árvores, para todas as parcelas de estudo. Comprovou-se ainda que o levantamento com HMLS só é vantajoso para terrenos regulares e percursos retos. Concluiu-se que deve ser efetuada uma melhoria nos processos associados à utilização do algoritmo SLAM (Simultaneous Localization And Mapping) e salientou-se a importância de utilizar pontos de referência em campo para a obtenção de nuvens de pontos de melhor qualidade
N/A
Mulè, Leonardo. "Low-cost survey solutions to support HBIM - Two case studies: the Azurém Canteen and Paço dos Duques in Portugal". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Cerca il testo completoSmearcheck, Mark A. "Investigation of Dual Airborne Laser Scanners for Detection and State Estimation of Mobile Obstacles in an Aircraft External Hazard Monitor". Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1212687342.
Testo completoAchakir, Farouk. "Au delà du visible : reconstruction d'environnements par scanners laser et miroirs". Electronic Thesis or Diss., Amiens, 2021. http://www.theses.fr/2021AMIE0088.
Testo completoThis PhD work investigates automatic digitization with complete coverage of large and complex environments using a terrestrial laser scanner (TLS) or a mobile scanner. We propose an adaptive multi-objective view-planner that can operate in an unknown environment to provide in offline mode guidance for the human operator and ease the scanning task or in online mode with a scanner embedded on a mobile robot for an automatic exploration of the environment. The proposed method assumes that the laser scanner is moved on a flat surface which is common in indoor environments, urban areas, open spaces or in various cultural heritage applications. First, we propose a novel exploration strategy that is completely automated and does not require extensive computations that uses specific regions of the environment called "Conservative-Cells" to drastically reduce the number of sensing positions to achieve complete digitization of the environment. Next, we present an approach to improve the scanning process in "offline" mode, especially when using a TLS in large environments. For this purpose, we suggested combining the use of a terrestrial laser scanner with a mobile robot equipped with a planar mirror. The result is a significant reduction in the effort required by the human operator to move the scanner in the environment and improve the completeness rate of the final point cloud. Proposed methods were validated with simulated and real point clouds on both TLS and mobile robot. The proposed approaches show efficient performance in terms of coverage rate and computational time compared to other view-planning approaches as well as the results of an experienced human operator in a large, complex environment
Nalani, Hetti Arachchige [Verfasser], Hans-Gerd [Akademischer Betreuer] Maas, Eberhard [Akademischer Betreuer] Gülch e Norbert [Akademischer Betreuer] Haala. "Automatic Reconstruction of Urban Objects from Mobile Laser Scanner Data / Hetti Arachchige Nalani. Gutachter: Hans-Gerd Maas ; Eberhard Gülch ; Norbert Haala. Betreuer: Hans-Gerd Maas". Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/1069093025/34.
Testo completoJensfelt, Patric. "Approaches to Mobile Robot Localization in Indoor Environments". Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3194.
Testo completoYoo, Hyun-Jae. "Analyse et conception de scanners laser mobiles dédiés à la cartographie 3D d'environnements urbains". Phd thesis, Paris, ENMP, 2011. https://pastel.hal.science/pastel-00579965/fr/.
Testo completoThis thesis is a collaboration between the Robotics Centre CAOR of MINES ParisTech and MENSI-Trimble under the CIFRE (Convention Industrielle de Formation par la Recherche) convention, to desgin an innovative laser scanning system dedicated to mobile mapping systems. We developed a method for the qualitative analysis of point-cloud data and the conception of a mobile mapping system using simulation. We elaborated several concepts for mobile laser scanners, which we realized virtually using the simulator. We performed data acquisitions in order to analyze the simulated data. We chose the most suitable concept, based on our analysis results, constructed a prototype and assessed its performance in a real environment
Yoo, Hyun-Jae. "Analyse et conception de scanners laser mobiles dédiés à la cartographie 3D d'environnements urbains". Phd thesis, École Nationale Supérieure des Mines de Paris, 2011. http://pastel.archives-ouvertes.fr/pastel-00579965.
Testo completoSchubert, Stefan. "Optimierter Einsatz eines 3D-Laserscanners zur Point-Cloud-basierten Kartierung und Lokalisierung im In- und Outdoorbereich". Master's thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-161415.
Testo completoKalvodová, Petra. "Kalibrace snímačů pro multispektrální datovou fúzi v mobilní robotice". Doctoral thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-390238.
Testo completoTiraferri, Matteo. "Georeferenziazione e rilievo tridimensionale di beni culturali in sotterraneo: gli Ipogei di Santarcangelo di Romagna". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Cerca il testo completoNalani, Hetti Arachchige. "Automatic Reconstruction of Urban Objects from Mobile Laser Scanner Data". Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28506.
Testo completoUp-to-date 3D urban models are becoming increasingly important in various urban application areas, such as urban planning, virtual tourism, and navigation systems. Many of these applications often demand the modelling of 3D buildings, enriched with façade information, and also single trees among other urban objects. Nowadays, Mobile Laser Scanning (MLS) technique is being progressively used to capture objects in urban settings, thus becoming a leading data source for the modelling of these two urban objects. The 3D point clouds of urban scenes consist of large amounts of data representing numerous objects with significant size variability, complex and incomplete structures, and holes (noise and data gaps) or variable point densities. For this reason, novel strategies on processing of mobile laser scanning point clouds, in terms of the extraction and modelling of salient façade structures and trees, are of vital importance. The present study proposes two new methods for the reconstruction of building façades and the extraction of trees from MLS point clouds. The first method aims at the reconstruction of building façades with explicit semantic information such as windows, doors and balconies. It runs automatically during all processing steps. For this purpose, several algorithms are introduced based on the general knowledge on the geometric shape and structural arrangement of façade features. The initial classification has been performed using a local height histogram analysis together with a planar growing method, which allows for classifying points as object and ground points. The point cloud that has been labelled as object points is segmented into planar surfaces that could be regarded as the main entity in the feature recognition process. Knowledge of the building structure is used to define rules and constraints, which provide essential guidance for recognizing façade features and reconstructing their geometric models. In order to recognise features on a wall such as windows and doors, a hole-based method is implemented. Some holes that resulted from occlusion could subsequently be eliminated by means of a new rule-based algorithm. Boundary segments of a feature are connected into a polygon representing the geometric model by introducing a primitive shape based method, in which topological relations are analysed taking into account the prior knowledge about the primitive shapes. Possible outlines are determined from the edge points detected from the angle-based method. The repetitive patterns and similarities are exploited to rectify geometrical and topological inaccuracies of the reconstructed models. Apart from developing the 3D façade model reconstruction scheme, the research focuses on individual tree segmentation and derivation of attributes of urban trees. The second method aims at extracting individual trees from the remaining point clouds. Knowledge about trees specially pertaining to urban areas is used in the process of tree extraction. An innovative shape based approach is developed to transfer this knowledge to machine language. The usage of principal direction for identifying stems is introduced, which consists of searching point segments representing a tree stem. The output of the algorithm is, segmented individual trees that can be used to derive accurate information about the size and locations of each individual tree. The reliability of the two methods is verified against three different data sets obtained from different laser scanner systems. The results of both methods are quantitatively evaluated using a set of measures pertaining to the quality of the façade reconstruction and tree extraction. The performance of the developed algorithms referring to the façade reconstruction, tree stem detection and the delineation of individual tree crowns as well as their limitations are discussed. The results show that MLS point clouds are suited to document urban objects rich in details. From the obtained results, accurate measurements of the most important attributes relevant to the both objects (building façades and trees), such as window height and width, area, stem diameter, tree height, and crown area are obtained acceptably. The entire approach is suitable for the reconstruction of building façades and for the extracting trees correctly from other various urban objects, especially pole-like objects. Therefore, both methods are feasible to cope with data of heterogeneous quality. In addition, they provide flexible frameworks, from which many extensions can be envisioned.
Tsai, Yao-yi, e 蔡曜宇. "A Mobile Robot Guidance System Using Laser Scanner in an Unknown Environment". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/03200754142564705619.
Testo completo國立臺灣科技大學
電機工程系
96
The purpose of this study is to propose the wheeled mobile robot (WMR) navigation system under an unknown environment, which consisting the 2D distance detection function, the environmental outline and the route constructing functions. The environmental outlines, which are the distance information in the front of the robot within the segmental area of the 180 degrees, are constructed based on the collecting angles and distance values through the detection and examination of the laser range finder. The robot also can move towards the specified goal progressively, and draw the outline of the surrounding after applying the fuzzy logic based regional path planning function. The environmental route mapping database from the starting point to the goal point can be created step by step with the detecting and analyzing the received individual map. In addition, this study adopts the mapping template to compare with the collected environmental information and a compass is also equipped to compensate the robot slipping to guide the robot’s movement more precisely.
Wong, Kim-Hon, e 黃金漢. "Pose-Tracking and Initialization of an Autonomous Mobile Robot Using Ultrasonics and Laser Scanner". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/73141785143672139385.
Testo completo國立中興大學
電機工程學系
92
This thesis develops methodologies and techniques for pose-tracking and pose initialization of an autonomous mobile robot (AMR) using two different external sensors: ultrasonics and laser scanner. First, a novel FPGA-based ultrasonic pose-tracking system by fusing the time-of-flight (TOF) readings together with the FAEIF algorithm is proposed to improve the accuracy and robustness of pose estimation for the AMR. The FAEIF-based sensor fusion approach is presented to circumvent the nonlinear filter divergence problems. Second, a low-complexity and accurate pose-tracking EKF algorithm is proposed based on rectangular model and a 2-D laser scanner. Finally, a pose initialization scheme based on a 2-D laser scanner is presented to determine the initial pose of the AMR given that the environmental model is known. Numerous simulations and experimental results are provided to verify the feasibility and effectiveness of the proposed pose-tracking and pose initialization methods.
Vock, Dominik. "Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data". Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A27971.
Testo completoWilliams, Keith E. "Accuracy assessment of LiDAR point cloud geo-referencing". Thesis, 2012. http://hdl.handle.net/1957/30209.
Testo completoGraduation date: 2012
Becherini, Pietro. "Le Mura di Verona. Il rilievo digitale per la tutela e valorizzazione del Patrimonio UNESCO". Doctoral thesis, 2020. http://hdl.handle.net/2158/1186421.
Testo completoSchubert, Stefan. "Optimierter Einsatz eines 3D-Laserscanners zur Point-Cloud-basierten Kartierung und Lokalisierung im In- und Outdoorbereich". Master's thesis, 2014. https://monarch.qucosa.de/id/qucosa%3A20206.
Testo completo