Articoli di riviste sul tema "ML fairness"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "ML fairness".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Weinberg, Lindsay. "Rethinking Fairness: An Interdisciplinary Survey of Critiques of Hegemonic ML Fairness Approaches". Journal of Artificial Intelligence Research 74 (6 maggio 2022): 75–109. http://dx.doi.org/10.1613/jair.1.13196.
Testo completoBærøe, Kristine, Torbjørn Gundersen, Edmund Henden e Kjetil Rommetveit. "Can medical algorithms be fair? Three ethical quandaries and one dilemma". BMJ Health & Care Informatics 29, n. 1 (aprile 2022): e100445. http://dx.doi.org/10.1136/bmjhci-2021-100445.
Testo completoYanjun Li, Yanjun Li, Huan Huang Yanjun Li, Qiang Geng Huan Huang, Xinwei Guo Qiang Geng e Yuyu Yuan Xinwei Guo. "Fairness Measures of Machine Learning Models in Judicial Penalty Prediction". 網際網路技術學刊 23, n. 5 (settembre 2022): 1109–16. http://dx.doi.org/10.53106/160792642022092305019.
Testo completoGhosh, Bishwamittra, Debabrota Basu e Kuldeep S. Meel. "Algorithmic Fairness Verification with Graphical Models". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 9 (28 giugno 2022): 9539–48. http://dx.doi.org/10.1609/aaai.v36i9.21187.
Testo completoKuzucu, Selim, Jiaee Cheong, Hatice Gunes e Sinan Kalkan. "Uncertainty as a Fairness Measure". Journal of Artificial Intelligence Research 81 (13 ottobre 2024): 307–35. http://dx.doi.org/10.1613/jair.1.16041.
Testo completoWeerts, Hilde, Florian Pfisterer, Matthias Feurer, Katharina Eggensperger, Edward Bergman, Noor Awad, Joaquin Vanschoren, Mykola Pechenizkiy, Bernd Bischl e Frank Hutter. "Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML". Journal of Artificial Intelligence Research 79 (17 febbraio 2024): 639–77. http://dx.doi.org/10.1613/jair.1.14747.
Testo completoMakhlouf, Karima, Sami Zhioua e Catuscia Palamidessi. "On the Applicability of Machine Learning Fairness Notions". ACM SIGKDD Explorations Newsletter 23, n. 1 (26 maggio 2021): 14–23. http://dx.doi.org/10.1145/3468507.3468511.
Testo completoSingh, Vivek K., e Kailash Joshi. "Integrating Fairness in Machine Learning Development Life Cycle: Fair CRISP-DM". e-Service Journal 14, n. 2 (dicembre 2022): 1–24. http://dx.doi.org/10.2979/esj.2022.a886946.
Testo completoZhou, Zijian, Xinyi Xu, Rachael Hwee Ling Sim, Chuan Sheng Foo e Bryan Kian Hsiang Low. "Probably Approximate Shapley Fairness with Applications in Machine Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 5 (26 giugno 2023): 5910–18. http://dx.doi.org/10.1609/aaai.v37i5.25732.
Testo completoSreerama, Jeevan, e Gowrisankar Krishnamoorthy. "Ethical Considerations in AI Addressing Bias and Fairness in Machine Learning Models". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 1, n. 1 (14 settembre 2022): 130–38. http://dx.doi.org/10.60087/jklst.vol1.n1.p138.
Testo completoBlow, Christina Hastings, Lijun Qian, Camille Gibson, Pamela Obiomon e Xishuang Dong. "Comprehensive Validation on Reweighting Samples for Bias Mitigation via AIF360". Applied Sciences 14, n. 9 (30 aprile 2024): 3826. http://dx.doi.org/10.3390/app14093826.
Testo completoTeodorescu, Mike, Lily Morse, Yazeed Awwad e Gerald Kane. "Failures of Fairness in Automation Require a Deeper Understanding of Human-ML Augmentation". MIS Quarterly 45, n. 3 (1 settembre 2021): 1483–500. http://dx.doi.org/10.25300/misq/2021/16535.
Testo completoPessach, Dana, e Erez Shmueli. "A Review on Fairness in Machine Learning". ACM Computing Surveys 55, n. 3 (30 aprile 2023): 1–44. http://dx.doi.org/10.1145/3494672.
Testo completoGhosh, Bishwamittra, Debabrota Basu e Kuldeep S. Meel. "Justicia: A Stochastic SAT Approach to Formally Verify Fairness". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 9 (18 maggio 2021): 7554–63. http://dx.doi.org/10.1609/aaai.v35i9.16925.
Testo completoSikstrom, Laura, Marta M. Maslej, Katrina Hui, Zoe Findlay, Daniel Z. Buchman e Sean L. Hill. "Conceptualising fairness: three pillars for medical algorithms and health equity". BMJ Health & Care Informatics 29, n. 1 (gennaio 2022): e100459. http://dx.doi.org/10.1136/bmjhci-2021-100459.
Testo completoDrira, Mohamed, Sana Ben Hassine, Michael Zhang e Steven Smith. "Machine Learning Methods in Student Mental Health Research: An Ethics-Centered Systematic Literature Review". Applied Sciences 14, n. 24 (16 dicembre 2024): 11738. https://doi.org/10.3390/app142411738.
Testo completoKumbo, Lazaro Inon, Victor Simon Nkwera e Rodrick Frank Mero. "Evaluating the Ethical Practices in Developing AI and Ml Systems in Tanzania". ABUAD Journal of Engineering Research and Development (AJERD) 7, n. 2 (settembre 2024): 340–51. http://dx.doi.org/10.53982/ajerd.2024.0702.33-j.
Testo completoEzzeldin, Yahya H., Shen Yan, Chaoyang He, Emilio Ferrara e A. Salman Avestimehr. "FairFed: Enabling Group Fairness in Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 6 (26 giugno 2023): 7494–502. http://dx.doi.org/10.1609/aaai.v37i6.25911.
Testo completoFessenko, Dessislava. "Ethical Requirements for Achieving Fairness in Radiology Machine Learning: An Intersectionality and Social Embeddedness Approach". Journal of Health Ethics 20, n. 1 (2024): 37–49. http://dx.doi.org/10.18785/jhe.2001.04.
Testo completoCheng, Lu. "Demystifying Algorithmic Fairness in an Uncertain World". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 20 (24 marzo 2024): 22662. http://dx.doi.org/10.1609/aaai.v38i20.30278.
Testo completoArslan, Ayse. "Mitigation Techniques to Overcome Data Harm in Model Building for ML". International Journal of Artificial Intelligence & Applications 13, n. 1 (31 gennaio 2022): 73–82. http://dx.doi.org/10.5121/ijaia.2022.13105.
Testo completoVartak, Manasi. "From ML models to intelligent applications". Proceedings of the VLDB Endowment 14, n. 13 (settembre 2021): 3419. http://dx.doi.org/10.14778/3484224.3484240.
Testo completoArjunan, Gopalakrishnan. "Enhancing Data Quality and Integrity in Machine Learning Pipelines: Approaches for Detecting and Mitigating Bias". International Journal of Scientific Research and Management (IJSRM) 10, n. 09 (24 settembre 2022): 940–45. http://dx.doi.org/10.18535/ijsrm/v10i9.ec04.
Testo completoSingh, Arashdeep, Jashandeep Singh, Ariba Khan e Amar Gupta. "Developing a Novel Fair-Loan Classifier through a Multi-Sensitive Debiasing Pipeline: DualFair". Machine Learning and Knowledge Extraction 4, n. 1 (12 marzo 2022): 240–53. http://dx.doi.org/10.3390/make4010011.
Testo completoTambari Faith Nuka e Amos Abidemi Ogunola. "AI and machine learning as tools for financial inclusion: challenges and opportunities in credit scoring". International Journal of Science and Research Archive 13, n. 2 (30 novembre 2024): 1052–67. http://dx.doi.org/10.30574/ijsra.2024.13.2.2258.
Testo completoKeswani, Vijay, e L. Elisa Celis. "Algorithmic Fairness From the Perspective of Legal Anti-discrimination Principles". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16 ottobre 2024): 724–37. http://dx.doi.org/10.1609/aies.v7i1.31674.
Testo completoDetassis, Fabrizio, Michele Lombardi e Michela Milano. "Teaching the Old Dog New Tricks: Supervised Learning with Constraints". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 5 (18 maggio 2021): 3742–49. http://dx.doi.org/10.1609/aaai.v35i5.16491.
Testo completoSunday Adeola Oladosu, Christian Chukwuemeka Ike, Peter Adeyemo Adepoju, Adeoye Idowu Afolabi, Adebimpe Bolatito Ige e Olukunle Oladipupo Amoo. "Frameworks for ethical data governance in machine learning: Privacy, fairness, and business optimization". Magna Scientia Advanced Research and Reviews 7, n. 2 (30 aprile 2023): 096–106. https://doi.org/10.30574/msarr.2023.7.2.0043.
Testo completoCzarnowska, Paula, Yogarshi Vyas e Kashif Shah. "Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics". Transactions of the Association for Computational Linguistics 9 (2021): 1249–67. http://dx.doi.org/10.1162/tacl_a_00425.
Testo completoPark, Sojung, Eunhye Ahn, Tae-Hyuk Ahn, SangNam Ahn, Soobin Park, Eunsun Kwon, Seoyeon Ahn e Yuanyuan Yang. "ROLE OF MACHINE LEARNING (ML) IN AGING IN PLACE RESEARCH: A SCOPING REVIEW". Innovation in Aging 8, Supplement_1 (dicembre 2024): 1215. https://doi.org/10.1093/geroni/igae098.3890.
Testo completoShah, Kanan, Yassamin Neshatvar, Elaine Shum e Madhur Nayan. "Optimizing the fairness of survival prediction models for racial/ethnic subgroups: A study on predicting post-operative survival in stage IA and IB non-small cell lung cancer." JCO Oncology Practice 20, n. 10_suppl (ottobre 2024): 380. http://dx.doi.org/10.1200/op.2024.20.10_suppl.380.
Testo completoIslam, Rashidul, Huiyuan Chen e Yiwei Cai. "Fairness without Demographics through Shared Latent Space-Based Debiasing". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 11 (24 marzo 2024): 12717–25. http://dx.doi.org/10.1609/aaai.v38i11.29167.
Testo completoLamba, Hemank, Kit T. Rodolfa e Rayid Ghani. "An Empirical Comparison of Bias Reduction Methods on Real-World Problems in High-Stakes Policy Settings". ACM SIGKDD Explorations Newsletter 23, n. 1 (26 maggio 2021): 69–85. http://dx.doi.org/10.1145/3468507.3468518.
Testo completoShook, Jim, Robyn Smith e Alex Antonio. "Transparency and Fairness in Machine Learning Applications". Symposium Edition - Artificial Intelligence and the Legal Profession 4, n. 5 (aprile 2018): 443–63. http://dx.doi.org/10.37419/jpl.v4.i5.2.
Testo completoDing, Xueying, Rui Xi e Leman Akoglu. "Outlier Detection Bias Busted: Understanding Sources of Algorithmic Bias through Data-centric Factors". Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society 7 (16 ottobre 2024): 384–95. http://dx.doi.org/10.1609/aies.v7i1.31644.
Testo completoGalhotra, Sainyam, Karthikeyan Shanmugam, Prasanna Sattigeri e Kush R. Varshney. "Interventional Fairness with Indirect Knowledge of Unobserved Protected Attributes". Entropy 23, n. 12 (25 novembre 2021): 1571. http://dx.doi.org/10.3390/e23121571.
Testo completoXiao, Ying, Jie M. Zhang, Yepang Liu, Mohammad Reza Mousavi, Sicen Liu e Dingyuan Xue. "MirrorFair: Fixing Fairness Bugs in Machine Learning Software via Counterfactual Predictions". Proceedings of the ACM on Software Engineering 1, FSE (12 luglio 2024): 2121–43. http://dx.doi.org/10.1145/3660801.
Testo completoIgoche, Bern Igoche, Olumuyiwa Matthew, Peter Bednar e Alexander Gegov. "Integrating Structural Causal Model Ontologies with LIME for Fair Machine Learning Explanations in Educational Admissions". Journal of Computing Theories and Applications 2, n. 1 (25 giugno 2024): 65–85. http://dx.doi.org/10.62411/jcta.10501.
Testo completoVajiac, Catalina, Arun Frey, Joachim Baumann, Abigail Smith, Kasun Amarasinghe, Alice Lai, Kit T. Rodolfa e Rayid Ghani. "Preventing Eviction-Caused Homelessness through ML-Informed Distribution of Rental Assistance". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 20 (24 marzo 2024): 22393–400. http://dx.doi.org/10.1609/aaai.v38i20.30246.
Testo completoMetevier, Blossom. "Pursuing Social Good: An Overview of Short- and Long-Term Fairness in Classification". ACM SIGCAS Computers and Society 52, n. 2 (settembre 2023): 6. http://dx.doi.org/10.1145/3656021.3656022.
Testo completoBantilan, Niels. "Themis-ml: A Fairness-Aware Machine Learning Interface for End-To-End Discrimination Discovery and Mitigation". Journal of Technology in Human Services 36, n. 1 (2 gennaio 2018): 15–30. http://dx.doi.org/10.1080/15228835.2017.1416512.
Testo completoElglaly, Yasmine N., e Yudong Liu. "Promoting Machine Learning Fairness Education through Active Learning and Reflective Practices". ACM SIGCSE Bulletin 55, n. 3 (luglio 2023): 4–6. http://dx.doi.org/10.1145/3610585.3610589.
Testo completoSeastedt, Kenneth P., Patrick Schwab, Zach O’Brien, Edith Wakida, Karen Herrera, Portia Grace F. Marcelo, Louis Agha-Mir-Salim et al. "Global healthcare fairness: We should be sharing more, not less, data". PLOS Digital Health 1, n. 10 (6 ottobre 2022): e0000102. http://dx.doi.org/10.1371/journal.pdig.0000102.
Testo completoWang, Mini Han, Ruoyu Zhou, Zhiyuan Lin, Yang Yu, Peijin Zeng, Xiaoxiao Fang, Jie yang et al. "Can Explainable Artificial Intelligence Optimize the Data Quality of Machine Learning Model? Taking Meibomian Gland Dysfunction Detections as a Case Study". Journal of Physics: Conference Series 2650, n. 1 (1 novembre 2023): 012025. http://dx.doi.org/10.1088/1742-6596/2650/1/012025.
Testo completoRaza, Shaina, Parisa Osivand Pour e Syed Raza Bashir. "Fairness in Machine Learning Meets with Equity in Healthcare". Proceedings of the AAAI Symposium Series 1, n. 1 (3 ottobre 2023): 149–53. http://dx.doi.org/10.1609/aaaiss.v1i1.27493.
Testo completoBegum, Shaik Salma. "JARVIS - Customer Support Chatbot with ML". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n. 01 (13 gennaio 2024): 1–12. http://dx.doi.org/10.55041/ijsrem28053.
Testo completoTang, Zicheng. "The Role of AI and ML in Transforming Marketing Strategies: Insights from Recent Studies". Advances in Economics, Management and Political Sciences 108, n. 1 (27 settembre 2024): 132–39. http://dx.doi.org/10.54254/2754-1169/108/20242009.
Testo completoPatel, Ekta V., Kirit J. Modi, e Maitri H. Bhavsar. "Employee Performance Evaluation Using Machine Learning". International Journal of Advances in Engineering and Management 6, n. 11 (novembre 2024): 160–64. https://doi.org/10.35629/5252-0611160164.
Testo completoGoretzko, David, e Laura Sophia Finja Israel. "Pitfalls of Machine Learning-Based Personnel Selection". Journal of Personnel Psychology 21, n. 1 (gennaio 2022): 37–47. http://dx.doi.org/10.1027/1866-5888/a000287.
Testo completoMangal, Mudit, e Zachary A. Pardos. "Implementing equitable and intersectionality‐aware ML in education: A practical guide". British Journal of Educational Technology, 23 maggio 2024. http://dx.doi.org/10.1111/bjet.13484.
Testo completo