Letteratura scientifica selezionata sul tema "Mitochondrial diseases"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Mitochondrial diseases".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Mitochondrial diseases"

1

Tang, Xiaoqiang, Xiao-Feng Chen, Hou-Zao Chen e De-Pei Liu. "Mitochondrial Sirtuins in cardiometabolic diseases". Clinical Science 131, n. 16 (24 luglio 2017): 2063–78. http://dx.doi.org/10.1042/cs20160685.

Testo completo
Abstract (sommario):
Mitochondria are heterogeneous and essentially contribute to cellular functions and tissue homeostasis. Mitochondrial dysfunction compromises overall cell functioning, tissue damage, and diseases. The advances in mitochondrion biology increase our understanding of mitochondrial dynamics, bioenergetics, and redox homeostasis, and subsequently, their functions in tissue homeostasis and diseases, including cardiometabolic diseases (CMDs). The functions of mitochondria mainly rely on the enzymes in their matrix. Sirtuins are a family of NAD+-dependent deacylases and ADP-ribosyltransferases. Three members of the Sirtuin family (SIRT3, SIRT4, and SIRT5) are located in the mitochondrion. These mitochondrial Sirtuins regulate energy and redox metabolism as well as mitochondrial dynamics in the mitochondrial matrix and are involved in cardiovascular homeostasis and CMDs. In this review, we discuss the advances in our understanding of mitochondrial Sirtuins in mitochondrion biology and CMDs, including cardiac remodeling, pulmonary artery hypertension, and vascular dysfunction. The potential therapeutic strategies by targetting mitochondrial Sirtuins to improve mitochondrial function in CMDs are also addressed.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Fu, Ailing. "Mitotherapy as a Novel Therapeutic Strategy for Mitochondrial Diseases". Current Molecular Pharmacology 13, n. 1 (15 gennaio 2020): 41–49. http://dx.doi.org/10.2174/1874467212666190920144115.

Testo completo
Abstract (sommario):
Background: The mitochondrion is a multi-functional organelle that is mainly responsible for energy supply in the mammalian cells. Over 100 human diseases are attributed to mitochondrial dysfunction. Mitochondrial therapy (mitotherapy) aims to transfer functional exogenous mitochondria into mitochondria-defective cells for recovery of the cell viability and consequently, prevention of the disease progress. Conclusion: Mitotherapy makes the of modulation of cell survival possible, and it would be a potential therapeutic strategy for mitochondrial diseases. Objective: The review summarizes the evidence on exogenous mitochondria that can directly enter mammalian cells for disease therapy following local and intravenous administration, and suggests that when healthy cells donate their mitochondria to damaged cells, the mitochondrial transfer between cells serve as a new mode of cell rescue. Then the transferred mitochondria play their roles in recipient cells, including energy production and maintenance of cell function.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Macdonald, Ruby, Katy Barnes, Christopher Hastings e Heather Mortiboys. "Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically?" Biochemical Society Transactions 46, n. 4 (19 luglio 2018): 891–909. http://dx.doi.org/10.1042/bst20170501.

Testo completo
Abstract (sommario):
Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Wang, Sheng-Fan, Shiuan Chen, Ling-Ming Tseng e Hsin-Chen Lee. "Role of the mitochondrial stress response in human cancer progression". Experimental Biology and Medicine 245, n. 10 (23 aprile 2020): 861–78. http://dx.doi.org/10.1177/1535370220920558.

Testo completo
Abstract (sommario):
Mitochondria are important organelles that are responsible for cellular energy metabolism, cellular redox/calcium homeostasis, and cell death regulation in mammalian cells. Mitochondrial dysfunction is involved in various diseases, such as neurodegenerative diseases, cardiovascular diseases, immune disorders, and cancer. Defective mitochondria and metabolism remodeling are common characteristics in cancer cells. Several factors, such as mitochondrial DNA copy number changes, mitochondrial DNA mutations, mitochondrial enzyme defects, and mitochondrial dynamic changes, may contribute to mitochondrial dysfunction in cancer cells. Some lines of evidence have shown that mitochondrial dysfunction may promote cancer progression. Here, several mitochondrial stress responses, including the mitochondrial unfolded protein response and the integrated stress response, and several mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and others) are reviewed; these pathways and molecules are considered to act as retrograde signaling regulators in the development and progression of cancer. Targeting these components of the mitochondrial stress response may be an important strategy for cancer treatment. Impact statement Dysregulated mitochondria often occurred in cancers. Mitochondrial dysfunction might contribute to cancer progression. We reviewed several mitochondrial stresses in cancers. Mitochondrial stress responses might contribute to cancer progression. Several mitochondrion-derived molecules (ROS, Ca2+, oncometabolites, exported mtDNA, mitochondrial double-stranded RNA, humanin, and MOTS-c), integrated stress response, and mitochondrial unfolded protein response act as retrograde signaling pathways and might be critical in the development and progression of cancer. Targeting these mitochondrial stress responses may be an important strategy for cancer treatment.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Habbane, Mouna, Julio Montoya, Taha Rhouda, Yousra Sbaoui, Driss Radallah e Sonia Emperador. "Human Mitochondrial DNA: Particularities and Diseases". Biomedicines 9, n. 10 (1 ottobre 2021): 1364. http://dx.doi.org/10.3390/biomedicines9101364.

Testo completo
Abstract (sommario):
Mitochondria are the cell’s power site, transforming energy into a form that the cell can employ for necessary metabolic reactions. These organelles present their own DNA. Although it codes for a small number of genes, mutations in mtDNA are common. Molecular genetics diagnosis allows the analysis of DNA in several areas such as infectiology, oncology, human genetics and personalized medicine. Knowing that the mitochondrial DNA is subject to several mutations which have a direct impact on the metabolism of the mitochondrion leading to many diseases, it is therefore necessary to detect these mutations in the patients involved. To date numerous mitochondrial mutations have been described in humans, permitting confirmation of clinical diagnosis, in addition to a better management of the patients. Therefore, different techniques are employed to study the presence or absence of mitochondrial mutations. However, new mutations are discovered, and to determine if they are the cause of disease, different functional mitochondrial studies are undertaken using transmitochondrial cybrid cells that are constructed by fusion of platelets of the patient that presents the mutation, with rho osteosarcoma cell line. Moreover, the contribution of next generation sequencing allows sequencing of the entire human genome within a single day and should be considered in the diagnosis of mitochondrial mutations.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Ngo, Jennifer, Corey Osto, Frankie Villalobos e Orian S. Shirihai. "Mitochondrial Heterogeneity in Metabolic Diseases". Biology 10, n. 9 (17 settembre 2021): 927. http://dx.doi.org/10.3390/biology10090927.

Testo completo
Abstract (sommario):
Mitochondria have distinct architectural features and biochemical functions consistent with cell-specific bioenergetic needs. However, as imaging and isolation techniques advance, heterogeneity amongst mitochondria has been observed to occur within the same cell. Moreover, mitochondrial heterogeneity is associated with functional differences in metabolic signaling, fuel utilization, and triglyceride synthesis. These phenotypic associations suggest that mitochondrial subpopulations and heterogeneity influence the risk of metabolic diseases. This review examines the current literature regarding mitochondrial heterogeneity in the pancreatic beta-cell and renal proximal tubules as they exist in the pathological and physiological states; specifically, pathological states of glucolipotoxicity, progression of type 2 diabetes, and kidney diseases. Emphasis will be placed on the benefits of balancing mitochondrial heterogeneity and how the disruption of balancing heterogeneity leads to impaired tissue function and disease onset.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Caffarra Malvezzi, Cristina, Aderville Cabassi e Michele Miragoli. "Mitochondrial mechanosensor in cardiovascular diseases". Vascular Biology 2, n. 1 (22 luglio 2020): R85—R92. http://dx.doi.org/10.1530/vb-20-0002.

Testo completo
Abstract (sommario):
The role of mitochondria in cardiac tissue is of utmost importance due to the dynamic nature of the heart and its energetic demands, necessary to assure its proper beating function. Recently, other important mitochondrial roles have been discovered, namely its contribution to intracellular calcium handling in normal and pathological myocardium. Novel investigations support the fact that during the progression toward heart failure, mitochondrial calcium machinery is compromised due to its morphological, structural and biochemical modifications resulting in facilitated arrhythmogenesis and heart failure development. The interaction between mitochondria and sarcomere directly affect cardiomyocyte excitation-contraction and is also involved in mechano-transduction through the cytoskeletal proteins that tether together the mitochondria and the sarcoplasmic reticulum. The focus of this review is to briefly elucidate the role of mitochondria as (mechano) sensors in the heart.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Che, Ruochen, Yanggang Yuan, Songming Huang e Aihua Zhang. "Mitochondrial dysfunction in the pathophysiology of renal diseases". American Journal of Physiology-Renal Physiology 306, n. 4 (15 febbraio 2014): F367—F378. http://dx.doi.org/10.1152/ajprenal.00571.2013.

Testo completo
Abstract (sommario):
Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Sui, Guo-Yan, Feng Wang, Jin Lee e Yoon Seok Roh. "Mitochondrial Control in Inflammatory Gastrointestinal Diseases". International Journal of Molecular Sciences 23, n. 23 (28 novembre 2022): 14890. http://dx.doi.org/10.3390/ijms232314890.

Testo completo
Abstract (sommario):
Mitochondria play a central role in the pathophysiology of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The maintenance of mitochondrial function is necessary for a stable immune system. Mitochondrial dysfunction in the gastrointestinal system leads to the excessive activation of multiple inflammatory signaling pathways, leading to IBD and increased severity of CRC. In this review, we focus on the mitochondria and inflammatory signaling pathways and its related gastrointestinal diseases.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kochar Kaur, Kulvinder, Gautam Allahbadia e Mandeep Singh. "A update on role of mitochondrial transport in etiopathogenesis & management of various CNS diseases, neurodegenerative diseases, immunometabolic diseases, cancer, viral infections inclusive of COVID 19 disease-a systematic review". Journal of Diabetes, Metabolic Disorders & Control 8, n. 2 (29 novembre 2021): 91–103. http://dx.doi.org/10.15406/jdmdc.2021.08.00228.

Testo completo
Abstract (sommario):
Mitochondria represent complicated intra cellular organelles which classically have been isolated as the powerhouse of eukaryotic cells secondary to their key part in the bioenergetic metabolism. In more recent decades, the escalation of mitochondrial research has got invoked in researchers that have illustrated that these organelles are much greater than just simple powerhouse of cell, possessing the capacity of other crucial parts like signaling platforms which control cell metabolism, proliferation, and demise besides immunological reactions. In the form of crucial controllers, mitochondria on impairment are implicated, in the etiopathogenesis of a wide variety of metabolic neurodegenerative, immune in addition to neoplastic conditions. Much more recently, greater importance has been given by the researchers with the capacity they possess with regards to. Intercellular transfer which might implicate whole mitochondria, mitochondrial Genome or other mitochondrial constituents. The Intercellular transfer of mitochondria that by definition as horizontal mitochondrial transport can take place in mammalian cells both in vivo, as well as in vitro in addition to both physiological along with pathological situations. Mitochondrial shifting can yield an external mitochondrial source that can restore the normal mitochondrial replacing the mitochondria having undergone impairment, thus resulting in the enhancement of mitochondrial quality, or in case of tumor, altering their functional properties, in addition to chemotherapy responsiveness. Here we have tried to provide a comprehensive review with regards to the biological significance, modes beneath the event, besides their implication in various pathophysiological disorders, emphasizing its treatment potential with regards to diseases where mitochondrial impairment is the primary etiopathogenetic cause of the disease.
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Mitochondrial diseases"

1

Gu, Mei. "Mitochondrial function in Parkinson's disease and other neurodegenerative diseases". Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322371.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Wredenberg, Anna. "Mitochondrial dysfunction in ageing and degenerative disease /". Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-311-5/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Addo, Mathew Glover. "Identification of new nuclear genes involved in the mitochondrial genome maintenance". Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112065.

Testo completo
Abstract (sommario):
Sous le terme de maladies mitochondriales, on désigne des maladies multi-systémiques ou à expression tissu-spécifique dues à un déficit de la phosphorylation oxydative qui est assurée par le fonctionnement de 5 complexes protéiques enzymatiques (chaîne respiratoire) parmi lesquelles 13 sous-unités sont codées par le génome mitochondrial, les autres par le génome nucléaire. Ces pathologies recouvrent donc en pratique des maladies génétiques par mutation de l’ADN mitochondrial (ADNmt) mais aussi des maladies génétiques à hérédité mendélienne classique. Dans les cytopathies mitochondriales liées à des mutations de gènes nucléaires, il existe deux sortes de gènes (i) à effet direct correspondant à des gènes codant pour les sous-unités protéiques de la chaîne respiratoire ou leur assemblage, et (ii) à effet indirect correspondant à des gènes codant pour des protéines impliquées dans le maintien et la réplication de l'ADN mitochondrial. Des mutations dans cette dernière classe de gènes peuvent s'accompagner d'anomalies quantitatives ou qualitatives de l'ADNmt : déplétion de l'ADNmt (réduction majeure du nombre de molécules d'ADNmt) et délétions multiples.Après des dosages enzymatiques de l’activité des complexes respiratoires mitochondriaux chez les patients, le ou les types de complexes altérés sont connus. Un grand nombre de gènes mutés responsables de pathologies mitochondriales ont été identifiés, tous codant des constituants des différents complexes de la chaîne respiratoire. Ces dernières années, le groupe d’Agnès Rötig (Hôpital Necker, Paris) a identifié de nouveaux gènes grâce à une approche gènes candidats ou grâce à des tours de génome de familles consanguines de patients qui permettent de délimiter une région chromosomique portant la mutation à l’état homozygote. La validation de l’effet délétère de la mutation identifiée se fait en général en utilisant des organismes modèles d’étude comme les cellules humaines en culture ou bien la levure. Cependant, il reste un grand nombre de cas où la mutation n’a pas pu être identifiée, soit parce que le déficit de tel ou tel complexe ne met pas en jeu un des composants connus de ce complexe ou bien plusieurs complexes de la chaîne respiratoire sont déficitaires mettant en jeu, dans un grand nombre de cas, le maintien de l’ADN mitochondrial pour lequel peu de gènes sont connus.Au laboratoire d’Orsay, nous disposons de deux organismes modèles d’étude, la levure S. cerevisiae et le nématode C. elegans. La levure S. cerevisiae est l’organisme modèle de choix pour étudier les fonctions mitochondriales grâce à ses caractéristiques comme la respiration facultative, mais aussi et surtout par la puissance de sa génétique et le fait que les mitochondries peuvent être transformées. Cependant de par sa respiration facultative et sa division clonale, elle ne se prête pas facilement à des études sur la stabilité de l’ADNmt. En effet, S. cerevisiae perd très facilement son ADNmt après inactivation d’un grand nombre de gènes impliqués dans pratiquement toutes les voies de la biogenèse mitochondriale. Cette levure ne peut donc pas être utilisée de façon simple pour l’étude de la transmission de l’ADN mitochondrial. C’est pourquoi nous nous sommes alors intéressés à l’autre organisme modèle développé au laboratoire, le nématode C. elegans dont ses caractéristiques en font un excellent modèle complémentaire à la levure
Mitochondrial respiratory chain diseases of nuclear origin represent one of the major causes of metabolic disorders. These diseases are characterized by a huge clinical and genetic heterogeneity which is a major problem in identifying the disease causing gene. Although several gene mutations have already been found in some patients or families, the disease causing gene of the majority is yet to be determined. The overall structure and gene content of the mitochondrial genome and the proteins required for mtDNA transactions are largely conserved from yeast to human offering the opportunity to use animal models to understand the molecular basis of mitochondrial dysfunctions. To expand the number of human candidate genes of mitochondrial diseases involved in mtDNA maintenance, we have developed in this study, the nematode Caenorhabditis elegans as a model organism to identify new proteins involved in mtDNA maintenance by combining RNAi and ethidium bromide exposure. We have developed a large-scale screening method of genes required for mtDNA maintenance in the worm and initially indentified four new C. elegans genes (atad-3, dnj-10, polrmt, phi-37 and immt-1) involved in mtDNA stability. The human homologs of these genes (ATAD3, DNAJA3, POLRMT and ATP5A1) can be now considered as candidate genes for patients with quantitative mtDNA deficiencies. Using our screening design we have begun to screen all the C. elegans genes encoding mitochondrial proteins. Of the 721 estimated C. elegans mitochondrial genes homologous to human genes, we have tested 185 genes and found that 41 genes are required for the maintenance of the mitochondrial genome in post mitotic cells. These genes fall into three main functional categories of metabolism, protein synthesis and oxidative phosphorylation. Finally, in this study, we investigated the reversibility of mtDNA depletion with drugs to counteract POLG dificiency. Three molecules, Chlorhexidine, Resveratrol and Bezafibrate, have been tested to restore normal mtDNA content and worm life cycle. These experiments hold promise for future work using C. elegans as a pharmacological model for mitochondrial diseases.Altogether, the data generated in this work is a starting point for promising advances in the mitochondrial field, showing the relevance of the nematode as a model organism to study fundamental processes as well as human health research
Gli stili APA, Harvard, Vancouver, ISO e altri
4

CIVILETTO, GABRIELE. "Opa1 overexpression as potential therapy in mitochondrial diseases". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/55460.

Testo completo
Abstract (sommario):
Mitochondrial disorders are a group of highly invalidating human conditions due to defective oxidative phosphorylation, for which no effective treatment is nowadays available. In order to develop effective therapies for these disorders, I focused on an experimental approach based on the manipulation of mitochondrial morphology. Opa1 is a GTPase of the inner mitochondrial membrane involved in both mitochondrial fusion and cristae shaping. The role of OPA1 in mitodynamics has also a documented impact on controlling the assembly of the respiratory supercomplexes and respiratory proficiency. Based on these considerations, I tested whether Opa1 overexpression could mitigate the effects of a severe mitochondrial respiratory chain deficit in vivo. In this thesis, the effects of mild transgenic overexpression of Opa1 on two mouse models of defective mitochondrial bioenergetics, a constitutive knockout for Ndufs4 (Ndufs4-/-), encoding a structural component of complex I, and a muscle-specific conditional knockout for Cox15, (Cox15sm/sm), encoding a heme-a biosynthetic enzyme involved in complex IV hemylation and assembly are shown. Crossing of both models with an Opa1 transgenic mouse line (Opa1tg) was associated with clinical and biochemical improvement, but whilst the effect was limited in Ndufs4-/-::Opa1tg mice, the Cox15sm/sm::Opa1tg mice showed relevant amelioration of motor performance, remarkable prolongation of survival, and significant correction of mitochondrial respiration. This effect was associated with the increased amount of active cIV holocomplex and cIV-containing supercomplexes.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ekstrand, Mats. "Mitochondrial dysfunction in neurodegeneration /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-204-7/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Aryamvally, Anjali. "Mitochondrial Replacement Therapy: Genetic Counselors’ Experiences, Knowledge and Opinions". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1583998248123854.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Granatiero, Veronica. "The role of calcium homeostasis in mitochondrial diseases and neurodegeneration". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423748.

Testo completo
Abstract (sommario):
Ca2+ is one of the main second messengers of cells and, in particular the Ca2+ signaling in mitochondria is involved in different physiological processes spanning from cell metabolism, through the control of mitochondrial respiration and crucial metabolic enzymes, to the response in stress conditions. Despite the lack of a mechanistic understanding, it is well known that mitochondrial Ca2+ overload is the most important trigger for the opening of permeability transition pore responsible for apoptosis induction after several toxic challenges. On the contrary, the role of Ca2+ signaling in autophagy only recently started to emerge. Autophagy is a process of self-eating by which cellular organelles and proteins are sequestered and degraded in order to produce energy and amino acids in metabolic stress conditions, such as nutrient deprivation. It is not surprising that mitochondrial Ca2+ also plays an important role in the pathological alteration of cell physiology in different human disorders. In the present work we will consider, in particular, the involvement of mitochondrial Ca2+ homeostasis and its correlated metabolic processes in two models of human diseases: mitochondrial disorders and neurodegeneration. Mitochondrial disorders are a large group of heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation defects. We used skin primary fibroblasts derived from a patient with a complex I mutation in ND5 subunit, as a model of mitochondrial disorders. This system revealed an interesting correlation between the decrease in mitochondrial Ca2+ uptake and the increase in autophagic flux. In addition, our results suggest that this is due to a structural rearrangement of intracellular organelle architecture causing a loss of ER-mitochondria contact sites. Neurodegeneration is caused by selective and progressive death of specific neuronal subtypes. In order to understand the involvement of mitochondrial Ca2+ signaling in the pathogenesis of neurodegeneration, we developed an in vitro system of mouse primary cortical neurons and we optimized an in vivo model of microinjection in mouse brain regions. In particular, we studied the effect of an increased mitochondrial Ca2+ uptake, induced by the overexpression of mitochondrial Ca2+ uniporter (MCU, the main responsible of Ca2+ entry in mitochondrial matrix), on cell survival, in both primary cultures and in midbrain mouse area. We concluded that mitochondrial Ca2+ accumulation induces mitochondrial fragmentation and higher sensitivity to cell death in neurons both in vitro and in vivo
Il Ca2+ è uno dei principali secondi messaggeri cellulari, ed in particolare il segnale Ca2+ mitocondriale è implicato in vari processi fisiologici che spaziano dal metabolismo, attraverso il controllo della respirazione mitocondriale, alla risposta a condizioni di stress. Nonostante alcuni meccanismi d’azione non siano ancora stati chiariti, il ruolo del Ca2+ nell’attivazione del processo apoptotico è ampiamente riconosciuto e comprovato. Al contrario, il coinvolgimento del segnale Ca2+ in un altro importante processo, quale quello autofagico, ha cominciato ad emergere solo recentemente. Il ruolo del Ca2+ a livello fisiologico risulta dunque fondamentale all’interno della cellula e alterazioni nella sua regolazione hanno ripercussioni così profonde da indurre l'evolversi di differenti patologie umane. Nel presente lavoro verrà approfondito il ruolo del Ca2+ mitocondriale in particolar modo in due modelli di patologie umane: le malattie mitocondriali e la neurodegenerazione. Le malattie mitocondriali sono un gruppo molto eterogeneo di patologie, accomunate principalmente dalla perdita di funzionalità della catena respiratoria. Come modello di studio di queste patologie abbiamo scelto di utilizzare delle colture primarie di fibroblasti umani derivanti da pazienti con una specifica mutazione nel gene per la subunità ND5 del complesso I della catena respiratoria del DNA mitocondriale. L’utilizzo di questo modello sperimentale si è rivelato molto utile per l’identificazione di una interessante correlazione tra la diminuzione dell’uptake di Ca2+ mitocondriale e l’aumento del flusso autofagico in queste cellule. Inoltre, i nostri risultati suggeriscono che la causa del ridotto accumulo di Ca2+ mitocondriale è direttamente correlato con un riarrangiamento spaziale nella distribuzione di reticolo endoplasmatico e mitocondri, tale per cui i siti di contatti presenti tra questi due organelli diminuiscono nettamente. La neurodegenerazione è causata dalla selettiva e progressiva perdita di specifici tipi neuronali. Allo scopo di studiare il coinvolgimento del Ca2+ nella neurodegenerazione, abbiamo sviluppato un modello in vitro di neuroni primari di corteccia di topo, in cui abbiamo analizzato gli effetti della sovraespressione del canale per il Ca2+ mitocondriale, MCU (mitochondrial Ca2+ uniporter). Dai nostri dati possiamo concludere che la sovraespressione di MCU ha degli effetti dannosi per le cellule neuronali, tanto da indurne la morte. Inoltre, abbiamo dei risultati preliminari anche in un sistema in vivo, i quali confermano e consolidano i dati ottenuti in vitro. Nello specifico, abbiamo iniettato vettori adeno-virali esprimenti il canale del Ca2+ mitocondriale nel mesencefalo di topo, utilizzando la tecnica dell’iniezione stereotassica, ed anche in questo caso osserviamo l’induzione di morte cellulare e degenerazione neuronale
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Aachi, Venkat Raghav. "Preliminary Characterization of Mitochondrial ATP-sensitive Potassium Channel (MitoKATP) Activity in Mouse Heart Mitochondria". PDXScholar, 2009. https://pdxscholar.library.pdx.edu/open_access_etds/1667.

Testo completo
Abstract (sommario):
Myocardial ischemia, infarction, heart failure and arrhythmias are the manifestations of coronary artery disease. Reduction of ischemic damage is a major concern of cardiovascular biology research. As per recent studies, the mitochondrial ATP-sensitive potassium channel (mitoKATP) opening is believed to play key role in the physiology of cardioprotection, protection against ischemia-reperfusion injury or apoptosis. However, the structural information of mitoKATP is not precisely known. Elucidating the structural integrity and functioning of the mitoKATP is therefore a major goal of cardiovascular biology research. The known structure and function of the cell ATP-sensitive potassium channel (cellKATP) is functional in interpreting the structural and functional properties of mitoKATP. The primary goal of my research was to characterize the activity of mitoKATP in the isolated mitochondria from the control mouse heart. The mitoKATP activity, if preliminarily characterized in the control strains through the light scattering technique, then the structure of the channel could possibly be established and analyzed by means of the transgenic model and with the help of immunological techniques such as western blotting and immunoflorescence. With this experimental model it was possible to demonstrate that the mitoKATP activity in control mouse heart mitochondria is activated by potassium channel openers (KCOs) such as diazoxide and cromakalim and activators of mitoKATP such as PMA (phorbol12 myristate-13-acetate), and inhibited by KATP inhibitors such as glibenc1amide and 5-hydroxydecanoate (5 HD). It was evident that the KATP activity in mouse heart mitochondria was comparable to that exhibited by the rat heart mitochondria. The various selective and non-selective activators and inhibitors of the channel elicited their activity at a similar concentration used for the rat heart mitochondria. The results were reproducible in five independent experiments for each combination, further reinforcing the significance of existing channel activity in the mouse heart mitochondria.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Liang, Christina Luh-Unn. "The Australian Mitochondrial Disease Study – Recognising and improving the diagnosis and management outcomes of adult patients with mitochondrial diseases". Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16723.

Testo completo
Abstract (sommario):
Background: Mitochondrial diseases are one of the most common hereditary neuromuscular conditions. Late-onset presentations are common. Genotype-phenotype correlations are poor, making the diagnosis difficult and prognostication imprecise. Objectives: We aim to refine the diagnostic pathway for adult patients suspected to have a mitochondrial disease, to better understand their clinical presentations, and to review their management strategies. Methods: At the Neurogenetics Clinic, we saw over 270 patients with suspected mitochondrial disease, of whom 148 patients had “probable” or “definite” disease. To review their most common and distinctive features, we set up a database to collate data on their clinical and investigational findings. Patients presenting with symptoms consistent with POLG1 mutations were screened by direct whole gene sequencing. We report cases of diagnostic challenge and interest. We explored for new diagnostic biomarkers, and devised a prediagnostic screening scale. We audited the patients who required critical care admissions. Results: We identified common pitfalls in diagnosing mitochondrial disease in adult patients, and proposed a new diagnostic paradigm. Among our cohort with features suggestive of POLG-related syndromes, only 10% had pathogenic mutations. We explored the use of FGF-21 (elevated in patients with muscle-manifesting mitochondrial disease); and GDF-15 (indicative of mitochondrial diseases more broadly), and both had significantly greater sensitivity and specificity than traditional blood biomarkers of disease. We created the MitoScale which as a screening tool, has a high sensitivity for the disease. We retrospectively followed a group of critically ill adult patients, and identified the common precipitating events, prodromal symptoms and complications. Conclusion: The diagnostic pathway for patients with suspected mitochondrial disease is improving with next generation genetic sequencing techniques and new serum diagnostic biomarkers. These should be reflected in the revision of diagnostic criteria and screening algorithms. The evidence for patient prognostication and management remains rudimentary, but ongoing research into larger patient cohorts enabled by database networks will help to improve patients’ management outcome.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Franco, Iborra Sandra. "Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/565668.

Testo completo
Abstract (sommario):
Darrerament s’han produït avanços importants que han contribuït al coneixement dels mecanismes de disfunció cel·lular i mort en la malaltia de Parkinson (MP) i en la malaltia de Huntington (MH). Ambdues malalties són trastorns del moviment que es caracteritzen per la pèrdua específica de neurones dels ganglis basals, les neurones dopaminèrgiques de la substància nigra (SN), en el cas de la MP i les neurones espinoses de l’estriat, en el cas de la MH. Malgrat les diferències, ambdues comparteixen processos patològics comuns com la presència de proteïnes malplegades, l’estrés oxidatiu i disfunció mitocondrial. La mitocòndria és la font d’energia principal en les cèl·lules eucariotes, però també és un orgànul dinàmic relacionat amb una gran quantitat de processos cel·lulars. La disrupció de la homeòstasis mitocondrial i la subseqüent disfunció mitocondrial juguen un paper important en la patofisiologia de les malalties neurodegeneratives. El manteniment de la integritat mitocondrial a través de diferents mecanismes de control és crític per a la superviviència neuronal. Aquesta tesi es centra en l’estudi dels mecanismes de control de qualitat mitocondrial en la MP i la MH, per tal d’entendre millor els mecanismes que duen a la mort cel·lular. En el primer capítol, he estudiat el transport de proteïnes a la mitocòndria en models in vitro i in vivo de la MP. In vitro, la inhibició del complexe I produeix una alteració del transport de proteïnes a la mitocòndria així com una disminució dels nivells de proteïnes OXPHOS, acumulació de proteïnes agregades i disminució dels nivells de chaperones mitocondrials. Per tal de restablir el transport de proteïnes mitocondrials es van sobreexpressar dos components clau del sistema de translocases: la translocasa de la membrana externa 20 (TOM20) i la translocasa de la membrana interna 23 (TIM23). La sobreexpressió in vitro de TOM20 i TIM23 va restaurar el transport de proteïnes mitocondrials i va alleugerar la disfunció mitocondrial i la mort cel·lular. La inhibició del complexe I en ratolins també dóna lloc a una alteració del transport de proteïnes mitocondrials i produeix neurodegeneració del sistema dopaminèrgic. La sobreexpressió de TIM23 va restaurar parcialment el transport de proteïnes i va protegir lleugerament les neurones dopaminèrgiques de la SN. En canvi, la sobreexpressió de TOM20 va ser incapaç de millorar el transport de proteïnes mitocondrials i, fins i tot, va exacerbar la mort cel·lular. Aquests resultats posen de relleu el paper de la disfunció del transport de proteïnes mitocondrials, en particular de dos dels seus components, en la patogènesis de la MP i suggereixen la necessitat de futurs estudis es centrin en altres elements d’aquest sistema. En el segon capítol, he estudiat el paper de la proteïna huntingtina en la mitofàgia i com la seva mutació, que dóna lloc a una expansió de glutamines, pot afectar a aquesta funció. Per a tal fi, he treballat en un model in vitro de cèl·lules estriatals ST-Q7 (control) i ST-Q111 (mutant). En condicions fisiològiques, la mitofàgia induïda no es troba mitjançada pel reclutament de parkin als mitocondris despolaritzats. La huntingtina mutada afecta la mitofàgia induïda a través de l’alteració de la seva funció de scaffold en diferents passos del procés de mitofàgia: (i) activació d’ULK1 a través de l’alliberament de mTORC1, (ii) formació del complexe Beclin 1-Vps15,(iii) interacció dels adaptadors de mitofàgia OPTN i NDP52 amb huntingtina i, (iv) amb LC3. Com a resultat, els mitocondris de les cèl·lules ST-Q111 estan més danyats i tenen una respiració mitocondrial deficient. Aquests resultats demostren la presència d’una alteració en la mitofàgia com un mecanisme lligat a la MH. En conclusió, el descobriment de noves dianes mitocondrials en la MP i MH emfatitza el paper important que juga el control de qualitat mitocondrial en la neurodegeneració.
In the past years, several important advances have expanded our understanding of the pathways that lead to cell dysfunction and death in Parkinson’s disease (PD) and Huntington’s disease (HD). Both diseases are movement disorders characterized by the loss of a specific subset of neurons within the basal ganglia, dopaminergic neurons in the substantia nigra pars compacta (SNpc), in the case of PD, and medium spiny neurons in the striatum, in the case of HD,. Despite distinct clinical and pathological features, these two neurodegenerative disorders share critical underlying pathogenic mechanisms such as the presence of misfolded and/or aggregated proteins, oxidative stress and mitochondrial anomalies. Mitochondria are the prime energy source in most eukaryotic cells, but these highly dynamic organelles are also involved in a multitude of cellular events. Disruption of mitochondrial homeostasis and the subsequent mitochondrial dysfunction plays a key role in the pathophysiology of neurodegenerative diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for neuronal survival. In this thesis I have studied in depth some mitochondrial quality control mechanisms in the context of PD and HD, in order to broaden the knowledge about the pathomechanisms leading to cell death. In the first chapter I have studied mitochondrial protein import in in vitro and in vivo models of PD. In vitro, complex I inhibition, a characteristic pathological hallmark in PD, impaired mitochondrial protein import. This was associated with OXPHOS protein downregulation, accumulation of aggregated proteins inside mitochondria and downregulation of mitochondrial chaperones. Therefore, we aimed to reestablish the mitochondrial protein import by overexpressing two key components of the system: translocase of the outer membrane 20 (TOM20) and translocase of the inner membrane 23 (TIM23). Overexpression of TOM20 and TIM23 in vitro restored protein import into mitochondria and ameliorated mitochondrial dysfunction and cell death. Complex I inhibition also impaired mitochondrial protein import and led to dopaminergic neurodegeneration in vivo. Overexpression of TIM23 partially rescued protein import into mitochondria and slightly protected dopaminergic neurons in the SNpc. On the contrary, TOM20 overexpression did not rescue protein import into mitochondria and exacerbated neurodegeneration in both SNpc and striatum. These results highlight mitochondrial protein import dysfunction and the distinct role of two of their components in the pathogenesis of PD and suggest the need for future studies to target other elements in the system. In the second chapter, I have studied the role of huntingtin in mitophagy and how the polyglutamine expansion present in mutant huntingtin can affect its function. For such, I worked with differentiated striatal ST-Q7 (as control) and ST-Q111 (as mutant) cells, expressing full length huntingtin. In these conditions, induced mitophagy was not mediated by Parkin recruitment into depolarized mitochondria. Mutant huntingtin impaired induced mitophagy by altering wildtype huntingtin scaffolding activity at different steps of mitophagy process: (i) ULK1 activation through its release from the mTORC1, (ii) Beclin1-Vps15 complex formation, (iii) interaction of the mitophagy adapters OPTN and NDP52 with huntingtin and (iv) with LC3. As a result, mitochondria from ST-Q111 cells exhibited increased damage and altered mitochondrial respiration. These results uncover impaired mitophagy as a potential pathological mechanism linked with HD. In conclusion, we have discovered new mitochondrial targets for PD and HD emphasizing the important role that mitochondrial quality control plays in neurodegeneration
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Mitochondrial diseases"

1

James, Holt Ian, a cura di. Genetics of mitochondrial diseases. Oxford: Oxford University Press, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Navas, Placido, e Leonardo Salviati, a cura di. Mitochondrial Diseases. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70147-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lestienne, Patrick, a cura di. Mitochondrial Diseases. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

service), ScienceDirect (Online, a cura di. Mitochondrial function: Mitochondrial protein kinases, protein phosphatases and mitochondrial diseases. San Diego, Calif: Academic Press/Elsevier, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

N, Gellerich Frank, Zierz S e Colloquium on Mitochondria and Myopathies (1st : 1995 : Halle an der Saale, Germany), a cura di. Detection of mitochondrial diseases. Dordrecht: Kluwer Academic, 1997.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Sun, Hongzhi, e Xiangdong Wang, a cura di. Mitochondrial DNA and Diseases. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6674-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Gellerich, Frank Norbert, e Stephan Zierz, a cura di. Detection of Mitochondrial Diseases. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6111-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Anna, Gvozdjáková, a cura di. Mitochondrial medicine: Mitochondrial metabolism, diseases, diagnosis and therapy. Dordrecht: Springer, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

V, Schapira Anthony H., e DiMauro S, a cura di. Mitochondrial disorders in neurology. Oxford: Butterworth-Heinemann, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

S, DiMauro, Hirano Michio e Schon Eric A, a cura di. Mitochondrial medicine. Abingdon [U.K.]: Informa Healthcare, 2006.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Mitochondrial diseases"

1

Lestienne, P. "Introduction". In Mitochondrial Diseases, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Buchet, K., e C. Godinot. "ATPase-ATP Synthase and Mitochondrial Pathology". In Mitochondrial Diseases, 129–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Fiore, C., V. Trezeguet, C. Schwimmer, P. Roux, R. Noel, A. C. Dianoux, G. J. M. Lauquin, G. Brandolin e P. V. Vignais. "Physiology and Pathophysiology of the Mitochondrial ADP/ATP Carrier". In Mitochondrial Diseases, 143–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Clottes, E., O. Marcillat, M. J. Vacheron, C. Leydier e C. Vial. "The Normal and Pathological Structure, Function and Expression of Mitochondrial Creatine Kinase". In Mitochondrial Diseases, 159–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Marsac, C., D. François, F. Fouque e C. Benelli. "Pyruvate Dehydrogenase Deficiencies". In Mitochondrial Diseases, 173–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Coppey, J., C. Durieux e M. Coppey-Moisan. "Electrochemical Gradient and Mitochondrial DNA in Living Cells". In Mitochondrial Diseases, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Alziari, S., N. Petit, E. Lefai, F. Beziat, P. Lecher, S. Touraille, R. Debise e F. Morel. "A Heteroplasmic Strain of D. Subobscura. An Animal Model of Mitochondrial Genome Rearrangement". In Mitochondrial Diseases, 197–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_15.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Belcour, L., A. Sainsard-Chanet, C. Jamet-Vierny e M. Picard. "Stability of the Mitochondrial Genome of Podospora anserina and Its Genetic Control". In Mitochondrial Diseases, 209–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Lestienne, P., e J. Veziers. "The Control of Ageing and Mitochondria". In Mitochondrial Diseases, 229–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_17.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Mignotte, B., e G. Kroemer. "Roles of Mitochondria in Apoptosis". In Mitochondrial Diseases, 239–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59884-5_18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Mitochondrial diseases"

1

Li, Ching-Wen, Pao-Hsin Yen e Gou-Jen Wang. "A Cascade Microfluidic Device for High Quality Mitochondria Extraction". In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46117.

Testo completo
Abstract (sommario):
Recent researches have demonstrated that cells ingest mitochondrial by endocytosis to repair cell damage. This new mitochondrial therapy approach can be used for curing particular disease of neuropathy related diseases. Hence the obtainment of high quality and healthy mitochondria play an important role in mitochondrial based disease therapy. In this study, we propose a cascade microfluidic device for green extraction of healthy mitochondria. The geometry of the device was designed using the commercially available COMSOL package. Soft lithography process was than conducted to realize the device of PDMS. We used C2-GFP cells to demonstrate the efficiency of the proposed cascade microfluidic device. The total protein assay kit (complex I-V) was conducted to examine the extractive protein and the SDS page (Tom 20) was used for measuring the activity of the extracted mitochondria. Experimental results illustrate that the complex I-V expression of the extracted mitochondria by the proposed device is much higher than that of the extracted mitochondria by conventional kit. Furthermore, the results of the Tom 20 expression also demonstrate that our device is able to extract more amounts of mitochondria than the conventional kit.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Horvath, R. "Molecular mechanisms of reversible infantile mitochondrial diseases". In 24. Kongress des Medizinisch-Wissenschaftlichen Beirates der Deutschen Gesellschaft für Muskelkranke (DGM) e.V. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1685013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Nesbitt, Victoria, e Judy Wadsworth. "1376 Supplementary feeding in children with mitochondrial diseases". In Royal College of Paediatrics and Child Health, Abstracts of the RCPCH Conference–Online, 15 June 2021–17 June 2021. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2021. http://dx.doi.org/10.1136/archdischild-2021-rcpch.599.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Horvath, Rita. "Mitochondrial Diseases: Diagnosis and Novel Approach for Treatment". In Congenital Dystrophies - Neuromuscular Disorders Precision Medicine: Genomics to Care and Cure. Hamad bin Khalifa University Press (HBKU Press), 2020. http://dx.doi.org/10.5339/qproc.2020.nmd.18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Alvarez-Mulett, S., L. G. Gomez-Escobar, E. Sanchez, M. Rice, A. Racanelli, X. Wu, A. M. K. Choi e R. J. Kaner. "Mitochondrial DNA as Biomarker to Differentiate Interstitial Lung Diseases". In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7885.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Evseeva, G., E. Knizhnikova, R. Telepneva, N. Kuderova, S. V. Suprun, E. Suprun, V. Kozlov e O. Lebed'ko. "Mitochondrial Dysfunction in Chronic Diseases of the Respiratory Organs". In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a3453.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Bank, William J., e Britton Chance. "Diagnosis of mitochondrial diseases by near-infrared spectroscopy (NIRS)". In Photonics West '95, a cura di Britton Chance e Robert R. Alfano. SPIE, 1995. http://dx.doi.org/10.1117/12.210026.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Krželj, Vjekoslav, e Ivana Čulo Čagalj. "INHERITED METABOLIC DISORDERS AND HEART DISEASES". In Symposium with International Participation HEART AND … Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. http://dx.doi.org/10.5644/pi2019.181.02.

Testo completo
Abstract (sommario):
Inherited metabolic disorders can cause heart diseases, cardiomyopathy in particular, as well as cardiac arrhythmias, valvular and coronary diseases. More than 40 different inherited metabolic disorders can provoke cardiomyopathy, including lysosomal storage disorders, fatty acid oxidation defects, organic acidemias, amino acidopathies, glycogen storage diseases, congenital disorders of glycosylation as well as peroxisomal and mitochondrial disorders. If identified and diagnosed on time, some of congenital metabolic diseases could be successfully treated. It is important to assume them in cases when heart diseases are etiologically undefined. Rapid technological development has made it easier to establish the diagnosis of these diseases. This article will focus on common inherited metabolic disorders that cause heart diseases, as well as on diseases that might be possible to treat.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Nesbitt, Victoria, e Rebecca Moore. "1404 Education health care plans for children with mitochondrial diseases". In Royal College of Paediatrics and Child Health, Abstracts of the RCPCH Conference–Online, 15 June 2021–17 June 2021. BMJ Publishing Group Ltd and Royal College of Paediatrics and Child Health, 2021. http://dx.doi.org/10.1136/archdischild-2021-rcpch.621.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Rezende, Maria Clara Lopes, Maria Luiza Franco de Oliveira, Júlia Campos Fabri, Maria Júlia Filgueiras Granato, Mariana Vanon Moreira e Leandro Vespoli Campos. "Neuroprotective Effects of Creatine Supplementation in Neurodegenerative Diseases". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.234.

Testo completo
Abstract (sommario):
Introduction: Creatine is important in providing energy for the resynthesis of adenosine triphosphate (ATP) and in the deposition of intracellular energy, being present mainly in muscle fibers and in the brain. Supplementation with exogenous creatine can be used in neurodegenerative disorders that are related to bioenergetic deficits in the etiology and progression of the disease. Objective: Highlight the neuroprotective mechanisms of creatine supplementation in neurodegenerative diseases. Methods: In April 2021, a search was carried out on MEDLINE, with the descriptors: “Creatine” and “Neuroprotection”; and its variations, obtained in MeSH. Studies published in the last five years were included. Results: Of the 122 articles found, four were used in this work. They concluded that creatine supplementation contributes to brain bioenergetics by increasing phosphocreatine deposits, restoring mitochondrial functions and decreasing susceptibility to apoptosis. In addition, creatine intake shortly after the diagnosis of Huntington’s and Parkinson’s Diseases can be used as a complementary therapy, because improve performance in tasks of memory and intelligence. Finally, it buffers cellular concentrations of ATP, being a possible therapeutic strategy to delay or stop neurodegeneration diseases. Conclusion: Creatine promote important neuroprotective effect, but further studies on the subject are needed.
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Mitochondrial diseases"

1

Ryan Mailloux, Ryan Mailloux. S-glutathionylation reactions in mitochondrial function and disease. Experiment, ottobre 2014. http://dx.doi.org/10.18258/3738.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Gluck, Martin R. Parkinson's Disease: The Link Between Monoamine Oxidase and Mitochondrial Respiration. Fort Belvoir, VA: Defense Technical Information Center, aprile 2004. http://dx.doi.org/10.21236/ada612171.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Surmeier, D. J. Glutamate Signaling and Mitochondrial Dysfunction in Models of Parkinson's Disease. Fort Belvoir, VA: Defense Technical Information Center, marzo 2014. http://dx.doi.org/10.21236/ada604089.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lee, Seung-Jae. Role of Oligomeric alpha-Synuclein in Mitochondrial Membrane Permeabilization and Neurodegeneration in Parkinson's Disease. Fort Belvoir, VA: Defense Technical Information Center, agosto 2004. http://dx.doi.org/10.21236/ada427150.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia