Letteratura scientifica selezionata sul tema "Micromegas à anode résistive"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Micromegas à anode résistive".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Micromegas à anode résistive"
Kuger, F., e P. Iengo. "Design, construction and quality control of resistive-Micromegas anode boards for the ATLAS experiment". EPJ Web of Conferences 174 (2018): 01013. http://dx.doi.org/10.1051/epjconf/201817401013.
Testo completoChefdeville, M., R. de Oliveira, C. Drancourt, N. Geffroy, T. Geralis, P. Gkountoumis, A. Kalamaris et al. "Development of Micromegas detectors with resistive anode pads". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1003 (luglio 2021): 165268. http://dx.doi.org/10.1016/j.nima.2021.165268.
Testo completoManjarrés, J., T. Alexopoulos, D. Attié, M. Boyer, J. Derré, G. Fanourakis, E. Ferrer-Ribas et al. "Performances of Anode-resistive Micromegas for HL-LHC". EPJ Web of Conferences 28 (2012): 12071. http://dx.doi.org/10.1051/epjconf/20122812071.
Testo completoManjarrés, J., T. Alexopoulos, D. Attié, M. Boyer, J. Derré, G. Fanourakis, E. Ferrer-Ribas et al. "Performances of anode-resistive Micromegas for HL-LHC". Journal of Instrumentation 7, n. 03 (20 marzo 2012): C03040. http://dx.doi.org/10.1088/1748-0221/7/03/c03040.
Testo completoCools, A., S. Aune, F. Beau, F. M. Brunbauer, T. Benoit, D. Desforge, E. Ferrer-Ribas et al. "X-ray imaging with Micromegas detectors with optical readout". Journal of Instrumentation 18, n. 06 (1 giugno 2023): C06019. http://dx.doi.org/10.1088/1748-0221/18/06/c06019.
Testo completoFan, Sheng-Nan, Rui-Rui Fan, Bo Wang, Hui-Rong Qi, Qun Ouyang, Fu-Ting Yi, Tian-Chi Zhao et al. "Study of a bulk-Micromegas with a resistive anode". Chinese Physics C 36, n. 9 (settembre 2012): 851–54. http://dx.doi.org/10.1088/1674-1137/36/9/010.
Testo completoManthos, I., S. Aune, J. Bortfeldt, F. Brunbauer, C. David, D. Desforge, G. Fanourakis et al. "Precise timing and recent advancements with segmented anode PICOSEC Micromegas prototypes". Journal of Instrumentation 17, n. 10 (1 ottobre 2022): C10009. http://dx.doi.org/10.1088/1748-0221/17/10/c10009.
Testo completoFeng, Jianxin, Zhiyong Zhang, Jianbei Liu, Ming Shao e Yi Zhou. "A novel resistive anode using a germanium film for Micromegas detectors". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1031 (maggio 2022): 166595. http://dx.doi.org/10.1016/j.nima.2022.166595.
Testo completoCools, A., S. Aune, F. M. Brunbauer, T. Benoit, A. Corsi, E. Ferrer-Ribas, F. J. Iguaz et al. "Neutron imaging with Micromegas detectors with optical readout". EPJ Web of Conferences 288 (2023): 07009. http://dx.doi.org/10.1051/epjconf/202328807009.
Testo completoScharenberg, L., F. Brunbauer, H. Danielsson, Z. Fang, K. J. Flöthner, F. Garcia, D. Janssens et al. "Characterisation of resistive MPGDs with 2D readout". Journal of Instrumentation 19, n. 05 (1 maggio 2024): P05053. http://dx.doi.org/10.1088/1748-0221/19/05/p05053.
Testo completoTesi sul tema "Micromegas à anode résistive"
Wang, Wenxin. "Etude d'un grand détecteur TPC Micromegas pour l'ILC". Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00854414.
Testo completoWang, Wenxin. "Etude d’un grand détecteur TPC Micromegas pour l’ILC". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112099/document.
Testo completoThe study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e⁺e⁻ collider. The leading project for this is called ILC. The team that I joined is working on the R&D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a ⁵⁵Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion backflow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several modules with a Kalman filter algorithm. The results of these studies are given in Chapter 7. The TPC technique has been applied to neutron imaging in collaboration with the University of Lanzhou. A test using a neutron source has been carried out in China. The results are reported in Chapter 8
Joshi, Shivam. "Characterization of resistive Micromegas for High Angle-Time Projection Chambers readout and preparation of neutrino physics analysis with upgraded near detector of T2K experiment". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP123.
Testo completoThe PhD work is in the field of Neutrino Physics as a part of the T2K experiment. The thesis is divided into two subjects- detector characterization and preparation of physics analysis. In the context of the upgrade of T2K near detector- ND280, a model was developed and utilized to characterize the charge spreading in novel resistive Micromegas (ERAM) detector. In addition, pad-by-pad gain and energy resolution was obtained for each ERAM for a complete characterization. The results directly led to the selection of specific ERAMs for installation at specific positions in the High Angle-Time Projection Chamber anode planes for charge readout. In total, 37 ERAMs were successfully characterized using X-ray data from a test bench at CERN. This information was also used as inputs for reconstruction. Improvement in statistics and detection efficiency of charged-current quasi-elastic events in high Q² (4-momentum transfer) region after the ND280 upgrade was studied. The question of- how effectively the high Q² uncertainties will be constrained after the ND280 upgrade by the 4 high Q² parameters in the neutrino-nucleus cross-section model was addressed using T2K re-weighting tools and the ND280 fitter- GUNDAM. An important source of the high Q² uncertainties is the axial-vector form factor model (dipole) used currently in the cross-section model. Some alternative form factor models that can better constrain these uncertainties were also studied. The effect of uncertainties in nucleon removal energy estimation on different variables (muon kinematics, neutrino energy, etc.) was studied. Binned splines were produced for the 4 removal energy parameters in the cross-section model in the context of Oscillation Analysis using data collected in 2024
Atti di convegni sul tema "Micromegas à anode résistive"
RuiRui Fan, Fengjie Hou, Shennan Fan, Futing Yi, Qun Ouyang, Yuanbo Chen e Tianchi Zhao. "Micromegas with resistive anode". In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5402051.
Testo completoLiang Guan, X. L. Wang, Z. Z. Xu e T. Zhao. "Micromegas with high resistivity anode". In 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5873903.
Testo completoDesaunais, P., J. Jeanjean e V. Puill. "Performance of a new type of Micromegas detector with stainless steel woven wire mesh and resistive anode readout". In 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515). IEEE, 2003. http://dx.doi.org/10.1109/nssmic.2003.1352122.
Testo completo