Letteratura scientifica selezionata sul tema "Microelectronic devices"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Microelectronic devices".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Microelectronic devices"
Brodie, I., e P. R. Schwoebel. "Vacuum microelectronic devices". Proceedings of the IEEE 82, n. 7 (luglio 1994): 1006–34. http://dx.doi.org/10.1109/5.293159.
Testo completovon Windheim, Tasso, Kristin H. Gilchrist, Charles B. Parker, Stephen Hall, James B. Carlson, David Stokes, Nicholas G. Baldasaro et al. "Proof-of-Concept Vacuum Microelectronic NOR Gate Fabricated Using Microelectromechanical Systems and Carbon Nanotube Field Emitters". Micromachines 14, n. 5 (29 aprile 2023): 973. http://dx.doi.org/10.3390/mi14050973.
Testo completoSrivastava, V. "THz vacuum microelectronic devices". Journal of Physics: Conference Series 114 (1 maggio 2008): 012015. http://dx.doi.org/10.1088/1742-6596/114/1/012015.
Testo completoMANUSHIN, Dmitrii V., Guzel' R. TAISHEVA e Shamil' I. ENIKEEV. "Russian microelectronics: Current state-of-the-art, logistics, management issues, crisis response measures". National Interests: Priorities and Security 19, n. 5 (16 maggio 2023): 808–42. http://dx.doi.org/10.24891/ni.19.5.808.
Testo completoChen, Yuan, e Xiao Wen Zhang. "Applications of Focused Ion Beam Technology in Bonding Failure Analysis for Microelectronic Devices". Applied Mechanics and Materials 58-60 (giugno 2011): 2171–76. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.2171.
Testo completoMin, K. H., e J. Mardinly. "Electron Tomography of Microelectronic Devices". Microscopy and Microanalysis 9, S02 (22 luglio 2003): 502–3. http://dx.doi.org/10.1017/s1431927603442517.
Testo completoEkpu, M., R. Bhatti, M. I. Okereke e K. C. Otiaba. "Fatigue life analysis of Sn96.5Ag3.0Cu0.5 solder thermal interface material of a chip-heat sink assembly in microelectronic applications". International Symposium on Microelectronics 2013, n. 1 (1 gennaio 2013): 000473–77. http://dx.doi.org/10.4071/isom-2013-wa23.
Testo completoOSADCHUK, Iaroslav. "MICROELECTRONIC AUTOGENERATOR TEMPERATURE SENSORS". Herald of Khmelnytskyi National University. Technical sciences 317, n. 1 (23 febbraio 2023): 237–47. http://dx.doi.org/10.31891/2307-5732-2023-317-1-237-247.
Testo completoКриштоп, В. Г., Д. А. Жевненко, П. В. Дудкин, Е. С. Горнев, В. Г. Попов, С. С. Вергелес e Т. В. Криштоп. "ТЕХНОЛОГИЯ И ПРИМЕНЕНИЕ ЭЛЕКТРОХИМИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ". NANOINDUSTRY Russia 96, n. 3s (15 giugno 2020): 450–55. http://dx.doi.org/10.22184/1993-8578.2020.13.3s.450.455.
Testo completoNorthrop, D. C. "Book Review: Introduction to Microelectronic Devices". International Journal of Electrical Engineering & Education 27, n. 1 (gennaio 1990): 93. http://dx.doi.org/10.1177/002072099002700139.
Testo completoTesi sul tema "Microelectronic devices"
Al-Amin, Chowdhury G. "Advanced Graphene Microelectronic Devices". FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2512.
Testo completoBurrows, Susan Elizabeth. "Silicone encapsulants for microelectronic devices". Thesis, University of Warwick, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319702.
Testo completoRamon, i. Garcia Eloi. "Inkjet printed microelectronic devices and circuits". Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/285078.
Testo completoIn the last years there has been a growing interest in the realization of low-cost, flexible and large area electronic systems such as item-level RFID tags, flexible displays or smart labels, among others. Printed Electronics has emerged as one of the most promising alternative manufacturing technologies due to its lithography- and vacuum-free processing. Related to this, organic and inorganic solution processed materials advanced rapidly improving the performance of printed devices. However, the fabrication of organic transistors, key element to build circuits for acquisition and processing, suffers from the poor resolution and layer-to-layer registration of current printing techniques such as inkjet and gravure printing. To compensate that transistors implemented in those technologies have large channel lengths and large gate to source/drain overlaps. These large dimensions limit the performance of the printed transistors, despite the improvements in materials. This thesis focuses on circumventing the printing resolution challenges using compensation techniques and new layout geometries while keeping an all-inkjet purely printing process. The dissertation deals with the development of microelectronic passive and active devices implemented using low-cost inkjet printing machinery. I focussed my effort in the design, manufacturing & characterization (electrical and morphological) points of view in order to allow the fabrication of organic integrated circuits. Several thousands of resistors, capacitors and transistors were fabricated, all of them fully inkjet-printed. All devices were morphologically and electrically characterized. A high number of experiments were developed to ensure efficient manufacturing and report on parameter variation, thus obtaining statistically significant data. Process variations present in transistor fabrication lead to a certain variability on the resulting transistor parameters that need to be taken in account. Scalability, variability and yield were analysed by using different strategies. Fabricated inverters show a clear inversion behaviour demonstrating the state of the inkjet fabrication process to integrate printed devices in circuits. This is a first step in the way to fabricate all-inkjet complex circuits. The amount of samples manufactured by the fully inkjet printing approach can be considered an outstanding achievement and contributes to a better knowledge of the behaviour and failure origins of organic and printed devices.
Solis, Adrian (Adrian Orbita). "MIT Device Simulation WebLab : an online simulator for microelectronic devices". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/33364.
Testo completoIncludes bibliographical references (p. 149-157).
In the field of microelectronics, a device simulator is an important engineering tool with tremendous educational value. With a device simulator, a student can examine the characteristics of a microelectronic device described by a particular model. This makes it easier to develop an intuition for the general behavior of that device and examine the impact of particular device parameters on device characteristics. In this thesis, we designed and implemented the MIT Device Simulation WebLab ("WeblabSim"), an online simulator for exploring the behavior of microelectronic devices. WeblabSim makes a device simulator readily available to users on the web anywhere, and at any time. Through a Java applet interface, a user connected to the Internet specifies and submits a simulation to the system. A program performs the simulation on a computer that can be located anywhere else on the Internet. The results are then sent back to the user's applet for graphing and further analysis. The WeblabSim system uses a three-tier design based on the iLab Batched Experiment Architecture. It consists of a client applet that lets users configure simulations, a laboratory server that runs them, and a generic service broker that mediates between the two through SOAP-based web services. We have implemented a graphical client applet, based on the client used by the MIT Microelectronics WebLab.
(cont.) Our laboratory server has a distributed, modular design consisting of a data store, several worker servers that run simulations, and a master server that acts as a coordinator. On this system, we have successfully deployed WinSpice, a circuit simulator based on Berkeley Spice3F4. Our initial experiences with WeblabSim indicate that it is feature-complete, reliable and efficient. We are satisfied that it is ready for beta deployment in a classroom setting, which we hope to do in Fall 2004.
by Adrian Solis.
M.Eng.
Reska, Anna. "Interfacing insect neuronal neutworks with microelectronic devices". Jülich Forschungszentrum, Zentralbibliothek, 2009. http://d-nb.info/1000321983/34.
Testo completoSanderson, Lisa. "Nanoscale strain characterisation of modern microelectronic devices". Thesis, University of Newcastle upon Tyne, 2012. http://hdl.handle.net/10443/1541.
Testo completoLimpaphayom, Koranan. "Microelectronic circuits for noninvasive ear type assistive devices". College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9887.
Testo completoThesis research directed by: Reliability Engineering Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Clarke, Warrick Robin Physics Faculty of Science UNSW. "Quantum interaction phenomena in p-GaAs microelectronic devices". Awarded by:University of New South Wales. School of Physics, 2006. http://handle.unsw.edu.au/1959.4/32259.
Testo completoHeng, Stephen Fook-Geow. "Experimental and theoretical thermal analysis of microelectronic devices". Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/16694.
Testo completoThongpang, Sanitta. "Vacuum field emission microelectronic devices based on silicon nanowhiskers". Thesis, University of Canterbury. Electrical and Computer Engineering, 2007. http://hdl.handle.net/10092/1141.
Testo completoLibri sul tema "Microelectronic devices"
Yang, Edward S. Microelectronic devices. New York: McGraw-Hill, 1988.
Cerca il testo completoYang, Edward S. Microelectronic devices. New York: McGraw-Hill, 1988.
Cerca il testo completoMicroelectronic devices. 2a ed. London: Imperial College Press, 1997.
Cerca il testo completoLeaver, K. D. Microelectronic devices. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Cerca il testo completoFonstad, Clifton G. Microelectronic devices and circuits. New York: McGraw-Hill, 1994.
Cerca il testo completoMicroelectronic circuits and devices. 2a ed. London: Prentice Hall International, 1996.
Cerca il testo completoFonstad, Clifton. Microelectronic devices and circuits. Maidenhead: McGraw-Hill, 1994.
Cerca il testo completoMicroelectronic circuits and devices. 2a ed. Englewood Cliffs, N.J: Prentice Hall, 1996.
Cerca il testo completo1956-, Tarr N. Garry, a cura di. Introduction to microelectronic devices. Englewood Cliffs, N.J: Prentice Hall, 1989.
Cerca il testo completoPulfrey, David L. Introduction to microelectronic devices. Englewood Cliffs, N.J: Prentice-Hall International, 1989.
Cerca il testo completoCapitoli di libri sul tema "Microelectronic devices"
Gardner, Julian W., Vijay K. Varadan e Osama O. Awadelkarim. "Standard Microelectronic Technologies". In Microsensors, MEMS, and Smart Devices, 61–116. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9780470846087.ch4.
Testo completoFöll, H., e B. Wild. "Polysilicon Layers in Modern Microelectronic Devices". In Springer Proceedings in Physics, 274–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76385-4_39.
Testo completoWang, Biao. "Dielectric Breakdown of Microelectronic and Nanoelectronic Devices". In Advanced Topics in Science and Technology in China, 443–524. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33596-9_9.
Testo completoLebedev, A. A., e V. E. Chelnokov. "Future Trends in SiC-Based Microelectronic Devices". In Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, 431–45. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5008-8_33.
Testo completoNair, Anju K., Paulose Thomas, Kala M. S e Nandakumar Kalarikkal. "Carbon Nanotubes for Nanoelectronics and Microelectronic Devices". In Handbook of Carbon Nanotubes, 1533–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91346-5_33.
Testo completoNair, Anju K., Paulose Thomas, Kala M. S e Nandakumar Kalarikkal. "Carbon Nanotubes for Nanoelectronics and Microelectronic Devices". In Handbook of Carbon Nanotubes, 1–23. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-70614-6_33-1.
Testo completoSiah, L. F. "Moisture-Driven Electromigrative Degradation in Microelectronic Packages". In Moisture Sensitivity of Plastic Packages of IC Devices, 503–22. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-5719-1_20.
Testo completoRuybalid, A. P., J. P. M. Hoefnagels, O. van der Sluis e M. G. D. Geers. "Full-Field Identification of Interfaces in Microelectronic Devices". In Micro and Nanomechanics, Volume 5, 9–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42228-2_2.
Testo completoDi Paolo Emilio, Maurizio. "Low-Power Solutions for Biomedical/Mobile Devices". In Microelectronic Circuit Design for Energy Harvesting Systems, 143–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47587-5_10.
Testo completoKinjo, Noriyuki, Masatsugu Ogata, Kunihiko Nishi, Aizou Kaneda e K. Dušek. "Epoxy Molding Compounds as Encapsulation Materials for Microelectronic Devices". In Speciality Polymers/Polymer Physics, 1–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0017963.
Testo completoAtti di convegni sul tema "Microelectronic devices"
Ivchuk, Sergiy, Vasyl Kogut e Volodymyr Karkulyovskyy. "The Microelectronic Devices Failure Diagnostics". In 2007 International Conference on Perspective Technologies and Methods in MEMS Design. IEEE, 2007. http://dx.doi.org/10.1109/memstech.2007.4283448.
Testo completoBrahma, Mettle, Neetu Kumari, Raju Bura e Mulaka Maruthi. "Microelectronic Devices and Human Health". In 2022 International Conference on Smart and Sustainable Technologies in Energy and Power Sectors (SSTEPS). IEEE, 2022. http://dx.doi.org/10.1109/ssteps57475.2022.00089.
Testo completoFriend, R. H. "Conducting polymers in microelectronic devices". In IEE Colloquium on Conducting Polymers and Their Applications in Transducers and Instrumentation. IEE, 1996. http://dx.doi.org/10.1049/ic:19961288.
Testo completoDrouin, D., M. A-Bounouar, G. Droulers, M. Labalette, M. Pioro-Ladriere, A. Souifi e S. Ecoffey. "3D microelectronic with BEOL compatible devices". In 2015 IEEE 33rd VLSI Test Symposium (VTS). IEEE, 2015. http://dx.doi.org/10.1109/vts.2015.7116262.
Testo completoSverdlov, Viktor, Hans Kosina e Siegfried Selberherr. "Current Flow in Upcoming Microelectronic Devices". In 2006 International Caribbean Conference on Devices, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/iccdcs.2006.250826.
Testo completoXu, Zheng, Ken Ngan, Jim VanGogh, Rod Mosely, Yoichiro Tanaka, H. Kieu, Fusen E. Chen e Ivo J. Raaijmakers. "Planar multilevel metallization technologies for ULSI devices". In Microelectronic Manufacturing, a cura di Fusen E. Chen e Shyam P. Murarka. SPIE, 1994. http://dx.doi.org/10.1117/12.186046.
Testo completoSchulze, H. J., e G. Deboy. "Optical characterization of power devices". In Microelectronic Manufacturing '95, a cura di John K. Lowell, Ray T. Chen e Jagdish P. Mathur. SPIE, 1995. http://dx.doi.org/10.1117/12.221201.
Testo completoBaicu, Floarea, Sever I. Spanulescu e Anca E. Gheorghiu. "Reliability certification of semiconductor devices using Goldthwaite diagrams". In Microelectronic Manufacturing, a cura di Michael L. Miller e Kaihan A. Ashtiani. SPIE, 2000. http://dx.doi.org/10.1117/12.410077.
Testo completoPecht, Michael, Elviz George, Arvind Vasan e Preeti Chauhan. "Fusion prognostics-based qualification of microelectronic devices". In 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2014. http://dx.doi.org/10.1109/ipfa.2014.6898209.
Testo completoGrauby, S., A. Salhi, J.-M. Rampnoux, W. Claeys e S. Dilhaire. "Laser scanning thermomechanical imaging of microelectronic devices". In 2008 14th International Workshop on Thermal Inveatigation of ICs and Systems (THERMINIC). IEEE, 2008. http://dx.doi.org/10.1109/therminic.2008.4669905.
Testo completoRapporti di organizzazioni sul tema "Microelectronic devices"
Grunze, M. Properties and Adhesion of Polyimides in Microelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, maggio 1991. http://dx.doi.org/10.21236/ada238204.
Testo completoLeung, M. S., e G. W. Stupian. Special Techniques for the Auger Analysis of Microelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, luglio 1986. http://dx.doi.org/10.21236/ada171631.
Testo completoVizkelethy, Gyorgy. Simulation of ion beam induced current in radiation detectors and microelectronic devices. Office of Scientific and Technical Information (OSTI), ottobre 2009. http://dx.doi.org/10.2172/974877.
Testo completoBates, J. B., e E. Saaski. Development of a thin-film battery powered hazard card and other microelectronic devices. CRADA final report. Office of Scientific and Technical Information (OSTI), dicembre 1997. http://dx.doi.org/10.2172/10115282.
Testo completoSiegmund, Thomas H. Numerical Simulation and Experiments of Fatigue Crack Growth in Multi-Layer Structures of MEMS and Microelectronic Devices. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2006. http://dx.doi.org/10.21236/ada464298.
Testo completoHarrison, Jr, e James W. Microelectronic Device Reliability. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1990. http://dx.doi.org/10.21236/ada218774.
Testo completoBelenky, Gregory. Equipment for Optoelectronic and Microelectronic Deviceb Fabrication. Fort Belvoir, VA: Defense Technical Information Center, marzo 2001. http://dx.doi.org/10.21236/ada389065.
Testo completoGuha, Supratik, H. S. Philip Wong, Jean Anne Incorvia e Srabanti Chowdhury. Future Directions Workshop: Materials, Processes, and R&D Challenges in Microelectronics. Defense Technical Information Center, giugno 2022. http://dx.doi.org/10.21236/ad1188476.
Testo completoPecht, Michael. The Influence of Temperature on Microelectronic Device Failure Mechanisms. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, settembre 1993. http://dx.doi.org/10.21236/ada275029.
Testo completoBrosh, Arieh, David Robertshaw, Yoav Aharoni, Zvi Holzer, Mario Gutman e Amichai Arieli. Estimation of Energy Expenditure of Free Living and Growing Domesticated Ruminants by Heart Rate Measurement. United States Department of Agriculture, aprile 2002. http://dx.doi.org/10.32747/2002.7580685.bard.
Testo completo