Tesi sul tema "Méthodes à N-Corps"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-33 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Méthodes à N-Corps".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Duguet, Thomas. "Problème à N corps nucléaire et force effective dans les méthodes de champ moyen auto-cohérent". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00001784.
Testo completoDuguet, Thomas. "Problème à N corps nucléaire et force effective dans les méthodes du champ moyen auto-cohérent". Paris 6, 2002. https://tel.archives-ouvertes.fr/tel-00001784.
Testo completoVenturelli, Andrea. "Application de la minimisation de l'action au problème des N corps dans le plan et dans l'espace". Paris 7, 2002. http://www.theses.fr/2002PA077190.
Testo completoBehar-Cany, Linda. "Méthodes d'aide à la conception optimale des systèmes multicorps". Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0017.
Testo completoLasseri, Raphaël-David. "Distribution spatiale de fermions fortement corrélés en interaction forte : formalisme, méthodes et phénoménologie en structure nucléaire". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS248/document.
Testo completoThe atomic nucleus is intrinsically a complex system, composed of strongly correlated non-elementary fermions, sensitive to strong and electroweak interaction. The description of its internal structure is a major challenge of modern physics. In fact the complexity of the nucleon-nucleon interaction generates correlations which are responsible of the diversity of shapes that the nuclei can adopt. Indeed the nuclei can adopt either quasi-homogeneous shapes when nucleons are delocalized or shapes where spatially localized structure can emerge, namely nuclear clusters. This work is an extension of relativistic mean-fields approach (RMF), which allows an universal treatment of nuclear phenomenology. In a first time we will present the necessary formalism to construct such an approach starting with the fundamental interactions underlying nucleons dynamics within the nucleus. However this approach doesn't allow an accurate reproduction of experimental properties: a purely mean-field approach neglects to many correlations. Existing methods to treat both particle-hole (deformation), particle-particle (pairing) correlations will be discussed. First we will propose a new diagrammatic method, which take correlation into account in a perturbative way, the implementation of this approach using combinatory theory will be discussed. Then we will get back to a phenomenological treatment of particle-hole correlations, to focus on the impact of particle-particle. Formation of nucleonic pair will be discussed in the language of graph theory, allowing several formal simplifications and shed a different light on pairing. Pairing correlations will be at first treated using a relativistic Hartree-Bogolioubov approach. Nevertheless this formalism doesn't conserve particle number, and thus we will present a projective approach to restore it. The effect of this restoration will also be studied. Then to describe general nuclear deformation, several implementations and optimizations developed during this PhD will be presented. With this tools, clusterisation will be investigated as phenomenon emerging for certain class of correlations. Localization measure will be derived allowing a clearer understanding of cluster physics. The analysis of theses quantities makes possible a first unified description of cluster formation both for light nuclei (Neon) or for heavy alpha emitters (Polonium). Cluster emergence will be described as a quantum phase transition, an order parameter will be displayed and this formation will be characterized as a Mott transition. The influence of pairing correlations on cluster formation is studied and a detailed study of pairs spatial properties is performed for nuclei from several mass regions. Lastly a method allowing treatment of 4-body correlations (quartteting) is proposed to explain cluster emergence as alpha particle preformation
Amblard, David. "Formalisme à N-corps GW environné dans une approche fragment : développements et applications à des systèmes complexes". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY028.
Testo completoThe GW formalism, a Green’s function many-body perturbation theory, is growing in popularity for the description of the electronic properties of condensed matter systems in solid-state physics, and more recently chemistry. Unfortunately, its application to complex systems of interest in nanosciences, chemistry, or even biology, is hampered by the large associated computing cost, in particular in the case of disordered systems, or systems immersed in an opened environment (a solvent, a molecular medium, an electrode, etc.) The goal of the present PhD thesis is to focus on the development of multiscale techniques, merging high-level many-body treatments of the subsystem of interest, with a simplified but fully ab initio description of the electrostatic and dielectric environment. Such approaches aim to go beyond classical parametrized models, mainly developed in the quantum chemistry community, which are based on a continuum (“polarizable continuum model”) or discrete (QM/MM) description of the environment.To reach such a goal, we adopt a divide-and-conquer fragmentation scheme for the environment, particularly suited to molecular systems. This leads to a block-diagonal non- interacting electron susceptibility, decreasing the algorithmic complexity from quartic to cubic. To reduce the prefactor associated with the inversion of the Dyson equation for the screened Coulomb potential W, we have further developed a compression algorithm for the susceptibility operator. The automatic computation of an extremely compact polarization basis set allows a large reduction of the size of the susceptibility blocks, associated to the fragments in the environment. Such a method enables us to compute the dielectric response of systems made of several hundred thousand atoms, with an excellent accuracy when it comes to reproduce the effect of the environment as a response to an excitation in the immersed subsystem. This approach is presented through the study of fullerene bulk, surface and subsurface crystals.While the GW formalism is dynamical, with a frequency-dependent screened Coulomb potential W, a first study is done adopting a static approximation (low-frequency limit) for the screening properties of the environment. Such an approach follows the traditional semi-empirical models of a polarizable environment. This PhD thesis assesses the validity of such an approximation, which assumes an instantaneous response (adiabatic limit) of the environment to an electronic excitation, thanks to an explicit comparison with a fully dynamical dielectric response of the environment. The study of a surface of fullerenes, as well as a water molecule inside a metallic carbon nanotube, show that a static description of the environment leads to errors on the polarization energy below 10%, provided that the “folding” of the environment is treated in a proper way.The fragment approach is also applied to covalent insulator crystals, and more particularly to hexagonal boron nitride (h-BN). We explain how to compute the energy levels of point defects in h-BN, in the true dilute limit, and we give the asymptotic scaling laws for the renormalization of these energy levels, from the monolayer to a (n)-layer system. This study highlights thus the possibility to apply the fragment approach to covalent insulator systems, a possibility hinging probably on the short range behavior of the susceptibility in these systems.All of these developments, extending ab initio many-body methods to increasingly complex systems, have been implemented in the massively parallel code beDeft, dedicated to the study of the electronic properties of large scale systems
Scalesi, Alberto. "On the characterization of nuclear many-body correlations in the ab initio approach". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP070.
Testo completoThe 'ab initio' branch of nuclear structure theory has traditionally focused on the study of light to mid-mass nuclei and primarily spherical systems. Current developments aim at extending this focus to heavy-mass nuclei and doubly open-shell systems. The study of such systems is qualitatively and quantitatively challenging. Hence, different strategies must be designed to efficiently capture the dominant correlations that most significantly impact the observables of interest. While in principle exact methods exist to solve the non-relativistic Schrödinger equation for a given Nuclear Hamiltonian, practical limitations in numerical simulations make such an approach impossible for most isotopes. This calls for a hierarchical characterization of the main correlations at play in the various nuclear systems. Most ab initio techniques rely on an initial mean-field calculation, typically carried out via the Hartree-Fock (HF) method, which provide a reference state containing the principal part of the correlations contributing to bulk nuclear properties. When tackling open-shell systems, it has been proven particularly convenient to break symmetries at mean-field level to effectively include the static correlations arising in superfluid (via HF-Bogoliubov theory, HFB) or deformed nuclei (via deformed HF, dHF). The present work contributes to this research line by proposing end exploring novel symmetry-breaking many-body techniques applicable to all nuclear systems. The simplest ab initio technique that can be applied on top of the mean-field is many-body perturbation theory. The first result of this work is the demonstration that symmetry-breaking perturbation theory (dBMBPT) based on state-of-the-art nuclear interactions can already qualitatively describe the main nuclear observables, such as ground-state energies and radii. Given that perturbation theory constitutes a cheap and efficient way to perform systematic studies of different nuclei across the nuclear chart, a part of the present work is dedicated to pave the way to such large-scale calculations. In order to push many-body calculations to higher precision, a novel ab initio technique is then introduced, namely the deformed Dyson Self-Consistent Green's function (dDSCGF) method. Such a non-perturbative (i.e., resumming an infinite number of perturbation-theory contributions) approach allows one to compute a wide variety of quantities of interest, both for the ground state of the targeted nucleus and for excited states of neighbouring systems. In addition, it naturally bridges to nuclear reactions giving access to, e.g., the evaluation of optical potentials. Given the high computational cost of non-perturbative many-body methods, the final section introduces possible approaches to make such calculations more efficient. In particular, the Natural Orbital basis is introduced and investigated in the context of deformed systems. Eventually, it is proven that this technique enables the use of much smaller basis sets, thus significantly decreasing the final cost of numerical simulations and enlarging their reach. All together, the developments reported in the present work open up new and promising possibilities for the ab initio description of heavy-mass and open-shell nuclei
Hansen, Hubert. "Méthodes non-perturbatives en théorie quantique des champs : au-delà du champ moyen, l'approximation de la phase aléatoire". Phd thesis, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00003814.
Testo completoEn se plaçant au-delà du champ moyen où seules sont prises en compte les corrélations entre une particule et un potentiel "moyen" à un corps, la RPA va permettre de rajouter dans le calcul de l'état fondamental des corrélations entre particules.
Afin de mettre en place le formalisme, on applique la RPA, sons différentes formes (standard, renormalisée, en termes de fonctions de Green), à l'une des plus simples théories des champs en interaction, la théorie scalaire lambda x phi^4. On montre qu'il se produit une transition de phase due à une brisure dynamique de symétrie dont le paramètre critique se rapproche des résultats obtenus sur réseaux et par la technique des "clusters". Les résultats sont aussi présentés à température finie pour le champ moyen.
On étudie également un modèle effectif réaliste de la transition de phase chirale, le modèle sigma-linéaire et on montre que le théorème de Goldstone est restauré, contrairement à l'approximation gaussienne.
Enfin pour éclaircir quelques points de la RPA et, aller au-delà des corrélations obtenues dans la forme renormalisée, on considère l'oscillateur anharmonique en mécanique quantique, en introduisant les corrélations minimales au-delà du champ moyen et on montre que les corrélations RPA améliorent grandement le résultat obtenu en champ moyen.
Courtin, Jérôme. "Empreinte de l'énergie noire sur la formation des structures". Paris 7, 2009. http://www.theses.fr/2009PA077203.
Testo completoThis thesis aims at the understanding of non linear mecanisms responsible for the imprints of Dark Energy in structure formation. These mecanisms should provide an observable imprint for the differenciation of the cosmologies. In this work, we study the specific consequences of quintessence phenomenologies on structure formation. This reflexion is lead in the Framework of N-body simulations in accelerated universes. We ran a number of state of art simulations for various cosmologies and a set of nine simulations with unprecedent resolution and mass range, for three observational dark energy cosmologies. Our results cover two aspects. First, the strong imprint of dark energy on the dark matter field structuration, and on mass functions. We show that cosmology parameters derived from observations in a consistent way induce a very different structuration. Second, we show that the linear history of structure formation is recorded in the non linear dark matter field which keeps a fine imprint of the specific expansion of each dark energy cosmology. We will show the effects of dark energy on dark matter haloes definition and the consequences on mass function prediction
Lavaux, Guilhem. "Reconstruction des vitesses propres des galaxies : méthodes et applications aux observations". Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00412146.
Testo completoAprès avoir testé cette méthode, nous l'utilisons sur un vrai catalogue de galaxie: le 2MASS Redshift survey. Après l'avoir corrigé des effets observationnels connus, nous étudions l'origine de la vitesse du Groupe Local par rapport au fond diffus cosmologique. Nous montrons que plus de la moitié de notre vitesse est due à des structures situées à plus de 40 Mpc/h. Une fois étudié le mouvement d'ensemble des structures locales, nous comparons directement les vitesses reconstruites et les distances observées dans notre voisinage de 30 Mpc/h. Nous proposons une estimation indépendante du paramètre de densité. Cette estimation peut être utilisée afin de réduire les dégénérescences dans l'espace des paramètres du modèle d'univers à base de matière noire froide.
Rodet, Laetitia. "Etude dynamique des exoplanètes et des disques de débris révélés par SPHERE". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY033.
Testo completoSeveral decades after the discovery of the first debris disks and exoplanets, lots of questions remain regarding the mechanisms of formation and evolution of planetary systems. The recent progress of high-resolution high-contrast direct imaging, illustrated by the instruments VLT/SPHERE and Gemini/GPI, enables to unveil the outer architecture (> 5 au) of young (< 200 Myr) extrasolar systems when the dynamical interactions are frequent. This work sheds light on the origin and dynamical evolution mechanisms of planetary systems through the detailed study of key systems resolved with SPHERE and through the developing of dedicated tools.The first part of this manuscript tackles the subject of N-body simulations. Numerous algorithms have been proposed and implemented, with different compromises on their speed, accuracy, and versatility. Among these algorithms, SWIFT HJS allows us to model for secular times architectures that are very different from our Solar System. It is thus an essential tool to the study of planetary to stellar companions with non-negligible mass ratio, which are often encountered with direct imaging. Within my Ph.D., the functionalities of the algorithm were extended to handle hierarchy changes and close encounters, which can play an important part in the dynamical history of planetary systems. The code was used to study in detail the mysterious system HD 106906, in particular, the interactions between its main components (binary star, planet, debris disk).In the second part of the manuscript, I introduce the subject of orbital fitting. The observation of a system at different epochs allows theoretically to retrieve the characteristics of the orbits. However, the problem is often complex and degenerate, in particular when the observations span a small fraction of the orbital period. The widely used MCMC statistical approach enables to get robust estimates in most of the cases. These estimates are then used to study the history and stability of the system, and the interactions between the orbits and their environment, notably the disks. This role of orbital fitting is here illustrated by the study of several benchmark systems imaged with SPHERE
Benarous, Mohamed. "Extensions variationnelles de la méthode du champ moyen dépendant du temps". Paris 11, 1991. http://www.theses.fr/1991PA112246.
Testo completoUsing the Balian-Vénéroni variational principle, we propose two consistent extensions of the time-dependent mean-field theory for many-boson systems. A first approximation, devised to take into account the effect of correlations, is obtained by means of a development of the optimal density operator suggested by the maximum entropy principle around a gaussian operator. We discuss the relevance of the evolution equations and their possible generalizations. We present an application to a one-dimensional example. In a second type of approximation, to optimize the prediction of characteristic functions of one-body observables and of transition probabilities, we select for both, the variational observable and the density matrix, the class of exponential operators of quadratic forms. We obtain coupled evolution equations of an unusual kind called "two-point boundary value problem". To solve them, we construct a suitable numerical algorithm. A test of the method is presented on two examples in one dimension. In a first case, we study the collision of a particle against a gaussian barrier. The method improves significantly mean-field predictions relative to reflexion and transmission ratios. The study of the motion of a particle in a quartic well reveals the existence of several different solutions for the transition probabilities predicted by the Balian-Veneroni method
Arthuis, Pierre. "Bogoliubov Many-Body Perturbation Theory for Nuclei : Systematic Generation and Evaluation of Diagrams and First ab initio Calculations". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS304/document.
Testo completoThe last few decades in nuclear structure theory have seen a rapid expansion of ab initio theories, aiming at describing the properties of nuclei starting from the inter-nucleonic interaction. Such an expansion relied both on the tremendous growth of computing power and novel formal developments. This work focuses on the development of the recently proposed Bogoliubov Many-Body Perturbation Theory that relies on a particle-number-breaking reference state to tackle singly open-shell nuclei. The formalism is first described in details, and diagrammatic and algebraic contributions are derived up to second order. Its link to standard Many-Body Perturbation Theory is made explicit, as well as its connexion to Bogoliubov Coupled-Cluster theory. An automated extension to higher orders based on graph theory methods is then detailed, and the ADG numerical program generating and evaluating BMBPT diagrams at arbitrary order is introduced. Such a formal development carries implications that are not restricted to the present work, as the developed methods can be applied to other many-body methods. Finally, first numerical results obtained for oxygen, calcium and nickel isotopes are presented. They establish BMBPT as a method of interest for large-scale computations of isotopic or isotonic chains in the mid-mass sector of the nuclear chart
González-Miret, Zaragoza Luis. "Exploring dipole electric strength functions through QRPA : Systematic calculations and other developments". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP146.
Testo completoThe quest for a comprehensive microscopic description of the atomic nucleus remains an open problem after almost a century of research. The diverse phenomena present within the nucleus, primarily arising from its many-body quantum nature, have led to the proliferation models, each specializing in describing a given set of nuclear features. To fully understand collective behaviour from a microscopic perspective, it is essential to move beyond a static mean-field approach. However, due mainly to the high computational cost required to do so, relatively few of such methods exist that provide systematic studies across the entire nuclear chart. One notable exception is the Quasiparticle Random Phase Approximation (QRPA) method, which allows for the description of both single-particle and collective nuclear excitations in the same footing while incorporating pairing effects. Previous studies have been carried out with the Gogny D1M force to produce gamma-strength functions for all nuclei. Nevertheless, for a more complete understanding, the use of other effective interactions and approaches within QRPA is paramount. In this thesis, new systematic QRPA studies are presented, alongside some new numerical and formal developments around QRPA.First, two systematic studies of gamma E1 transitions are discussed. Here, the QRPA problem is addressed using the Finite Amplitude Method (FAM), which enables the rapid evaluation of smoothed strength functions. The first study employs the covariant effective Lagrangian DD-PC1 to conduct extensive calculations across the nuclear chart. Additionally, another study investigates the same transitions in light and mid-mass nuclei using chiral interactions, which provide a realistic characterization of the internucleon force grounded in Quantum Chromodynamics through effective field theory. Notably, we present the first-ever chiral-QRPA results using a triaxially deformed mean-field, exploring the impact of this deformation on the QRPA response in ²⁴Mg and ³²S. Beyond the systematic QRPA studies, two further developments are presented. Firstly, we tacklethe problem of obtaining exact QRPA excited states using the FAM approach. In its original formulation, FAM was used to calculate strength functions, while obtainig the QRPA eigenstates was only possible via a post-procesing procedure. In this thesis, we introduce a new method based on the Jacobi-Davidson algorithm, which enables the efficient calculation of several targeted QRPA eigenstates with significantly reduced computational time compared to the matrix QRPA approach. Lastly, we propose a new straightforward formula to correct for the violation of the Pauli principle in QRPA, which is applied to compute correlation energies
Angelone, Adriano. "Strongly correlated systems of bosons and fermions : a diagrammatic, variational and path integral Monte Carlo study". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF028/document.
Testo completoThe focus of my thesis is the investigation, via numerical approaches, of strongly correlated models of bosons and fermions. I study bosonic lattice Hamiltonians with extended--range interactions, of interest for experiments with cold Rydberg-dressed atoms, via Path Integral MonteCarlo simulations. My main result is the demonstration of a superglass in the absence of frustration sources in the system. I also study the fermionic $t-J$ model in the presence of two holes via Variational Monte Carlo with the Entangled Plaquette States Ansatz. My study is foundational to the extension of this approach to other fermionic systems, of interest for high temperature superconductivity, where the physical picture is still under debate (such as, e.g., the $t-J$ model in the case of finite hole concentration). Finally, I discuss my work on an implementation of the Diagrammatic Monte Carlo algorithm
Delange, Pascal. "Many-electron effects in transition metal and rare earth compounds : Electronic structure, magnetic properties and point defects from first principles". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX040/document.
Testo completoThe topic of this thesis is the first-principles theory of the electronic structure of materials with strong electronic correlations. Tremendous progress has been made in this field thanks to modern implementations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it is designed to predict ground state but not excited state properties of materials, even though the latter may be just as important for many applications. Second, the approximate functionals used in actual calculations have more limited validity than conceptually exact DFT: in particular, they are not able to describe those materials where many-electron effects are most important.Since the 1990's, different many-body theories have been used to improve or complement DFT calculations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing good results if correlations are mostly local. We briefly review these methods in the first part of this thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local effects, understanding out-of-equilibrium properties or describing real materials rather than model systems, among others. Here, we focus on the latter aspect.In order to describe real materials with DMFT, one typically needs to start with an electronic structure calculation that treats all the electrons of the system on the same footing, and apply a many-body correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not least because DFT and DMFT are working on different observables. In the second part of this thesis, we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.In the third and last part, we use the methods described above to study the electronic structure of three fundamentally and technologically important correlated materials. First, we discuss the physics of point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy. Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently from calculations and experiments. We show that this is due to subtle but nevertheless important correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly more strongly correlated than the ferromagnetic phase where DFT calculations had been done.Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms. Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the electronic structure of VO2.Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-interaction error, stressing again the importance of carefully tailored low-energy models
Malpetti, Daniele. "Thermodynamics of strongly interacting bosons on a lattice : new insights and numerical approaches". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN065/document.
Testo completoCold atoms in optical lattices offer unprecedented control over strongly correlatedmany-body states. For this reason they represent an excellent tool for the implementation ofa “quantum simulator”, which can be used to realize experimentally several Hamiltonians ofsystems of physical interest. In particular, they enable the engineering of artificial gaugefields, which gives access to the physics of frustrated magnetism. In this work, we study thethermodynamics of cold atoms both from a theoretical and a numerical point of view. Atpresent days, the most effective method used in this field is the quantum Monte Carlo. Butbecause of the so-called “sign problem” it can only be applied to a limited class of systems,which for example do not include frustrated systems. The interest of this thesis is to developof a new approximated method based on a Monte Carlo approach. The first part of this workis dedicated to theoretical considerations concerning the spatial structure of quantum andclassical correlations. These results permit to develop, in the second part, an approximationcalled quantum mean-field. This latter allows to propose, in the third part, a numericalmethod that we call “auxiliary-field Monte Carlo” and that we apply to some systems ofphysical interest, among which the frustrated triangular lattice
Roy, Fabrice. "Etude du système couplé Boltzmann sans collisions-Poisson pour la gravitation : simulations numériques de la formation des systèmes auto-gravitants". Phd thesis, Versailles-St Quentin en Yvelines, 2004. http://pastel.archives-ouvertes.fr/pastel-00002403.
Testo completoHalbert, Loïc. "La méthode Equation of Motion Coupled Cluster pour la modélisation des états excités et propriétés des molécules contenant des éléments lourds". Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR038.
Testo completoIn this thesis, we seek to obtain certain molecular properties for species containing heavy elements or presenting atmospheric interests. For this, we use techniques to characterize the core electrons, with ionization potentials (IP) or with excitation energies (EE), allowing for example to respectively interpret X-ray Photoelectron Spectroscopy(XPS) and X-ray Absorption Spectroscopy (XAS). We also seek to characterize valence electrons through the polarizability, which is used for example to develop force fields. When we work with heavy elements or with core electrons, we must take relativistic effects into account. We therefore used the Dirac-Coulomb(-Gaunt) Hamiltonian. Furthermore, to compare our results with experiments, we need precise methods. Thus, we will work with the Coupled-Cluster (CC) method, and will use the Equation of Motion Coupled-Cluster (EOM-CC) method to obtain the IPs, EEs and electron affinities (EA). However, these two elements (4-component Hamiltonians and post-Hartree-Fock methods) imply considerable computational costs, requiring the resources of High Performance Computing (HPC) platforms.This thesis presents a study of the Core-Valence Separation (CVS) method, which will allow us to reach the properties of core electrons (IP and EE) with EOM-CC. We provide a detailed investigation of the performance of different Hamiltonians, in particular the exact two-component molecular mean field Hamiltonian. Second, we will focus on the perturbative approximations (Partioned and Many Body Perturbation Theory 2d order (MBPT (2)) to be applied to the EOM-CC matrix to limit computational costs, including for core processes. Finally, we present the work carried out in Exacorr, a new relativistic coupled cluster implementation for hybrid and massively parallel architectures. We will finish by outlining the formalism and working equations for the Linear Response Coupled-Cluster (LRCC) method, through which analytical (frequency-dependent) molecular polarizabilities can be obtained
Stellin, Filippo. "Anderson localization in interacting quantum systems". Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7004.
Testo completoIn this thesis we theoretically investigate the behaviour of quantum particles (electrons, atoms, photons, etc.) moving in a random medium and undergoing Anderson localization. For noninteractingparticles, the energy spectrum can possess one or more critical points, where the nature of the single-particle wavefunctions changes from extended to localized leading to a undergoes a metal-insulator phase transition, also known as Anderson transition.A fundamental question is whether and how Anderson transitions survive in interacting quantum systems. Here we study a minimal model of two particles moving in a disordered lattice and subject to short-range mutual interactions. By combining large-scale numerics with Green’s functions techniques, we show that two-particle Anderson transitions do occur in three dimensions and explore the phase diagram in the space of energy, disorder and interaction strength. The latter presents a rich structure, characterized by a doubly reentrant behavior, caused by the competition between scattering and bound states of the pair. We also show that previous claims of 2D Anderson transitions of the pair are essentially due to finite-size effects.A second problem that we address in this thesis is the occurrence of 2D metal-insulator transitions for a single particle in the presence of a spatially correlated potential and subject to spin-orbit interactions, described by Rashba-Dresselhaus couplings. We illustrate that, irrespective of the properties of the disorder, there is a regime where the critical energy depends linearly on the disorder strength. The slope and the intercept are studied in the vicinity of the spin-helix point, where the SU(2) symmetry is restored and the 2D metal-insulator transition disappears
Jourdeuil, Emilie. "N-corps évolutif pour la modélisation photométrique et dynamique des galaxies de type précoce". Phd thesis, Université Claude Bernard - Lyon I, 2005. http://tel.archives-ouvertes.fr/tel-00400642.
Testo completoBotzung, Thomas. "Study of strongly correlated one-dimensional systems with long-range interactions". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAF062.
Testo completoDuring this Ph.D., we studied one-dimensional systems with long-range couplings. In the first part, we demonstrate that power-law couplings lead to an algebraic decay of correlations at long distances in disordered quantum wires. In the second chapter, we analysed an extended Hubbard model where particles interact via a finite-range potential that induces frustration and new exotic phases. In the third chapter, we demonstrated that restoring energy extensivity has an influence on the low-energy properties of quantum model in the thermodynamic limit. Finally, we provide preliminary results on the modification of Anderson localization due to the coupling to a cavity mode
Gagnon, Anne-Marie. "Une méthode alternative pour obtenir le pouvoir thermoélectrique à température finie". Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8847.
Testo completoLechaftois, François. "Description des états excités du noyau par la méthode de la Quasiparticle Random-Phase Approximation et l'interaction de Gogny". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS430/document.
Testo completoThis thesis presents three aspects centered around the QRPA (Quasiparticle Random Phase Approximation).The first consists in the use of an axial code to confront computed data with experimental results andto feed a microscopic reaction code. This step is a chance to analyse low-energy spectroscopy (fewtens of MeV) of some nuclei, and more precisely (but not exclusively) the tin isotopic chain (Z=50).The second one relies on the improvement of the formalism to calculate multipolar electromagnetictransition operators, and a method to consolidate the computation of these operators, allowing toease the programming by unifying the code for different multipolarities. Finally, in order to overcomethe axial symmetry constraint, a new triaxial code has been developed. Its assets and developmentare presented, followed by the first batch of results
Fortin, Pierre. "Algorithmique hiérarchique parallèle haute performance pour les problèmes à N-corps". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2006. http://tel.archives-ouvertes.fr/tel-00135843.
Testo completoNous étudions tout d'abord deux expressions distinctes du principal opérateur (« multipôle-to-local ») ainsi que les bornes d'erreur associées. Pour ces deux expressions, nous présentons une formulation matricielle dont l'implémentation avec des routines BLAS (Basic Linear Algebra Subprograms) permet d'améliorer fortement l'efficacité de calcul. Dans la gamme de précisions qui nous intéresse, cette approche se révèle plus performante que les améliorations existantes (FFT, rotations et ondes planes), pour des distributions uniformes ou non.
Outre une nouvelle structure de données pour l'octree sous-jacent et des contributions algorithmiques à la version adaptative, nous avons aussi efficacement parallélisé notre méthode en mémoire partagée et en mémoire distribuée. Enfin, des comparaisons avec des codes dédiés justifient l'intérêt de notre code pour des simulations en astrophysique.
Verrière, Marc. "Description de la dynamique de la fission dans le formalisme de la méthode de la coordonnée génératrice dépendante du temps". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS113/document.
Testo completoNuclear fission, where an atomic nucleus separates into two fragments while emitting a large amount of energy, is at the core of many applications in society (energy production) and national security (deterrence, non-proliferation). It is also a key ingredient of the mechanisms of formation of elements in the universe. Yet, nearly 80 years after its experimental discovery its theoretical description in terms of the basic constituents of the nucleus (protons and neutrons) and their interaction remains a challenge. In this thesis, we describe the fission process as follows. In a first step, we use large supercomputers to compute the deformation properties of the nucleus based on our knowledge of nuclear forces. In a second step, we simulate the time evolution of the system from its ground state up to the fragments separation with a fully quantum-mechanical approach called the time-dependent generator coordinate method (TDGCM). While results are in good qualitative agreement with experimental data, the implementation of the TDGCM so far had been greatly simplified using what is known as the Gaussian overlap approximation (GOA). We also developed the formalism and a numerical implementation of the exact TDGCM - without the GOA. This will allow the first systematic validation of that approximation and an assessment of the resulting theoretical uncertainties. The second chapter presents the description of the neutron induced fission process using the TDGCM+GOA. The third one introduces the developments carried out in this thesis allowing the description of the fission process with the TDGCM without the GOA. The last chapter shows the first results obtained with this approach
Baloïtcha, Ezinvi. "[Première partie] : Méthode des paquets d'ondes pour le calcul des sections efficaces et constantes de vitesse dans les processus non adiabatiques : [deuxième partie] : paramétrisation de problèmes à N-corps en mécanique quantique non relativiste". Paris 11, 2002. http://www.theses.fr/2002PA112144.
Testo completoThe thesis is subdivided in two parts: I. Method of wave packets for calculation of the cross section and thermal rate constant for the non-adiabatic processes. II. Parametrization of N-body problem in non-relativistic quantum mechanics. The part devoted to parameterization of the N-body problem deals with curvilinear coordinates and supersymmetry in non-relativistic quantum mechanics with applications to the principal-axis hyperspherical coordinate. Operators known as quasimomenta properties have been studied and a generalization of commutation relation has been established for these quasimomenta. The supersymmetry studied in non-relativistic quantum mechanics constitutes an approach for resolving the eigenvalue problems mainly for the Schrödinger equation. These works have been presented in three publications: J. Math. Phys. 40 6133 (1999) ; J. Phys. B 32 4823 (1999) ; Mol. Phys. 98, 387 (2000). The other part devoted to molecular dynamics contains two applications: first, the development of a method of calculation based on wave packets to extract the rate constant speed charge exchange process in ion-atom collision. This work have been presented in three publications: Phys. Rev. A, 63 42704(2001); J Chem. Phys. 114, 8741(2001); International Journal of Molecular Sciences, (in press, 2002). The second application concerns the computation of the cumulative probability of reaction for an hydrogen transfer in isomerization process. The conclusions are published in J Chem. Phys. 117 (in press, 2002)
Hasnaoui, Karim. "Transition de phase et frustration en physique nucléaire et astrophysique". Phd thesis, Université de Caen, 2008. http://tel.archives-ouvertes.fr/tel-00337606.
Testo completoEtcheverry, Arnaud. "Simulation de la dynamique des dislocations à très grande échelle". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0263/document.
Testo completoThis research work focuses on bringing performances in 3D dislocation dynamics simulation, to run efficiently on modern computers. First of all, we introduce some algorithmic technics, to reduce the complexity in order to target large scale simulations. Second of all, we focus on data structure to take into account both memory hierachie and algorithmic data access. On one side we build this adaptive data structure to handle dynamism of data and on the other side we use an Octree to combine hierachie decompostion and data locality in order to face intensive arithmetics with force field computation and collision detection. Finnaly, we introduce some parallel aspects of our simulation. We propose a classical hybrid parallelism, with task based openMP threads and domain decomposition technics for MPI
Campos, Serrano Juan. "Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions". Phd thesis, Université Paris Dauphine - Paris IX, 2012. http://tel.archives-ouvertes.fr/tel-00861568.
Testo completoMoghrabi, Kassem. "Beyond-mean-field corrections and effective interactions in the nuclear many-body problem". Phd thesis, Paris 11, 2013. http://tel.archives-ouvertes.fr/tel-00908607.
Testo completoLaflamme, Janssen Jonathan. "Méthode de calcul à N-corps basée sur la G0W0 : étude du couplage électron-phonon dans le C60 et développement d’une approche accélérée pour matériaux organiques". Thèse, 2013. http://hdl.handle.net/1866/10809.
Testo completoThis thesis studies the limitations of density functional theory. These limits are explored in the context of a traditional implementation using a plane waves basis set. First, we investigate the limit of the size of the systems that can be treated. Cutting edge methods that assess these limitations are then used to simulate nanoscale systems. More specifically, the grafting of bromophenyl molecules on the sidewall of carbon nanotubes is studied with these methods, as a better understanding of this procedure could have substantial impact on the electronic industry. Second, the limitations of the precision of density functional theory are explored. We begin with a quantitative study of the uncertainty of this method for the case of electron-phonon coupling calculations and find it to be substantially higher than what is widely presumed in the literature. The uncertainty on electron-phonon coupling calculations is then explored within the G0W0 method, which is found to be a substantially more precise alternative. However, this method has the drawback of being severely limitated in the size of systems that can be computed. In the following, theoretical solutions to overcome these limitations are developed and presented. The increased performance and precision of the resulting implementation opens new possibilities for the study and design of materials, such as superconductors, polymers for organic photovoltaics and semiconductors.
Antonius, Gabriel. "Calculs ab initio de structures électroniques et de leur dépendance en température avec la méthode GW". Thèse, 2014. http://hdl.handle.net/1866/11664.
Testo completoThis thesis deals with electronic structure calculations in solids. Using density functional theory and many-body perturbation theory, we seek to compute the band structure of materials in the most precise and efficient way. First, the theoretical developments leading to density functional theory (DFT) and to Hedin's equations are presented. It is shown how the GW approximation allows for a practical scheme to compute the self-energy, whose results enhance the agreement of the band structure with experiments, compared to DFT. We then analyse the performance of GW calculations in various transparent oxides, namely ZnO, SnO2 and SiO2. A special attention is devoted to the plasmon-pole model, which allows to accelerate significantly the calculations by modelling the inverse dielectric matrix. Among the different plasmon-pole models, the one of Godby and Needs turns out to be the most accurate in the studied materials. The second part of the thesis concentrates on the interaction between vibrations of the crystal lattice with electronic states. It is first shown how the electron-phonon coupling affects the band structure at finite temperature and at zero temperature, which is called the zero-point renormalization (ZPR). Then, we use the GW method to compute the electron-phonon coupling in diamond. The ZPR turns out to be strongly amplified with respect to DFT upon the application of GW corrections, enhancing the agreement with experimental observations.