Articoli di riviste sul tema "Metals Fatigue"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Metals Fatigue.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Metals Fatigue".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Correia, J. A. F. O., A. M. P. De Jesus, I. F. Pariente, J. Belzunce e A. Fernández-Canteli. "Mechanical fatigue of metals". Engineering Fracture Mechanics 185 (novembre 2017): 1. http://dx.doi.org/10.1016/j.engfracmech.2017.10.029.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Enomoto, Masatoshi. "Prediction of Fatigue Life for Light Metals and their Welded Metals". Materials Science Forum 794-796 (giugno 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.273.

Testo completo
Abstract (sommario):
A6N01 (6005C in ISO) base metal is applied for cantilever type fatigue test over 108 cyclic number. Fatigue strength decreases over 107 and after testing, new prediction formula of fatigue life at high cycle regeion which named YENs formula is proposed for light metal and their welded joints. This formula is shown as below. Log (σa/σp) =k Log (Nf-N0)+m σa is stress amplitude, σp is proof stress k is depend on stress concentration factor Nf is fatigue life without residual stress and No is discrepancy due to residual stress. m is material constant. This formula is a hypothesis and it is required to accumulate much more fatigue data for many kind of alloys and their welded joints.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Polák, Jaroslav, Jiří Man e Ivo Kuběna. "The True Shape of Persistent Slip Markings in Fatigued Metals". Key Engineering Materials 592-593 (novembre 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.

Testo completo
Abstract (sommario):
Persistent slip markings (PSMs) were experimentally studied in 316L steel fatigued to early stages of the fatigue life. High resolution SEM, combined with focused ion beam (FIB) technique and atomic force microscopy (AFM) were used to assess the true shape of PSMs in their early stage of development. General features of PSMs in fatigued metals are extrusions and intrusions. Their characteristic features were determined. They were discussed in relation with the theories of surface relief formation and fatigue crack initiation based on the formation, migration and annihilation of point defects in the bands of intensive cyclic slip - persistent slip bands (PSBs)
Gli stili APA, Harvard, Vancouver, ISO e altri
4

KAWAGOISHI, Norio, Qiang CHEN, Masahiro GOTO, Qingyuan WANG e Hironobu NISITANI. "Ultrasonic Fatigue Properties of Metals". Proceedings of Conference of Kyushu Branch 2003 (2003): 47–48. http://dx.doi.org/10.1299/jsmekyushu.2003.47.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

TROSHCHENKO, V. T. "Fatigue fracture toughness of metals". Fatigue & Fracture of Engineering Materials & Structures 32, n. 4 (aprile 2009): 287–91. http://dx.doi.org/10.1111/j.1460-2695.2009.01343.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fonseca de Oliveira Correia, José António, Miguel Muñiz Calvente, Abílio Manuel Pinho de Jesus e Alfonso Fernández-Canteli. "ICMFM18-Mechanical fatigue of metals". International Journal of Structural Integrity 8, n. 6 (4 dicembre 2017): 614–16. http://dx.doi.org/10.1108/ijsi-10-2017-0055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Pineau, André, David L. McDowell, Esteban P. Busso e Stephen D. Antolovich. "Failure of metals II: Fatigue". Acta Materialia 107 (aprile 2016): 484–507. http://dx.doi.org/10.1016/j.actamat.2015.05.050.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Vinogradov, A., e S. Hashimoto. "Fatigue of Severely Deformed Metals". Advanced Engineering Materials 5, n. 5 (16 maggio 2003): 351–58. http://dx.doi.org/10.1002/adem.200310078.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Lowe, Terry C. "Enhancing Fatigue Properties of Nanostructured Metals and Alloys". Advanced Materials Research 29-30 (novembre 2007): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.117.

Testo completo
Abstract (sommario):
Recent research on the fatigue properties of nanostructured metals and alloys has shown that they generally possess superior high cycle fatigue performance due largely to improved resistance to crack initiation. However, this advantage is not consistent for all nanostructured metals, nor does it extend to low cycle fatigue. Since nanostructures are designed and controlled at the approximately the same size scale as the defects that influence crack initiation attention to preexisting nanoscale defects is critical for enhancing fatigue life. This paper builds on the state of knowledge of fatigue in nanostructured metals and proposes an approach to understand and improve fatigue life using existing experimental and computational methods for nanostructure design.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Teng, N. J., e T. H. Lin. "Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation". Journal of Engineering Materials and Technology 117, n. 4 (1 ottobre 1995): 470–77. http://dx.doi.org/10.1115/1.2804741.

Testo completo
Abstract (sommario):
Fatigue bands have been observed in both monocrystalline and polycrystalline metals. Extrusions and intrusions at the free surface of fatigued specimens are favorable sites for fatigue crack nucleation. Previous studies (Lin and Ito, 1969; Lin, 1992) mainly concerned the fatigue crack initiation in aluminum and its alloys. The elastic anisotropy of individual crystals of these metals is insignificant and was accordingly neglected. However, the anisotropy of the elastic constants of some other metallic crystals, such as titanium and some intermetallic compounds, is not negligible. In this paper, the effect of crystal anisotropy is considered by using Eshelby’s equivalent inclusion method. The polycrystal analyzed is Ni3Al intermetallic compound. The plastic shear strain distributions and the cumulative surface plastic strain in the fatigue band versus the number of loading cycles were calculated, and the effect of crystal anisotropy on the growth of the extrusions was examined.
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Levitin, V. V., S. V. Loskutov, M. I. Pravda e B. A. Serpetsky. "WORK FUNCTION FOR FATIGUE TESTED METALS". Nondestructive Testing and Evaluation 17, n. 2 (gennaio 2001): 79–89. http://dx.doi.org/10.1080/10589750108953103.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Fatemi, Ali, Reza Molaei e Nam Phan. "Multiaxial Fatigue of Additive Manufactured Metals". MATEC Web of Conferences 300 (2019): 01003. http://dx.doi.org/10.1051/matecconf/201930001003.

Testo completo
Abstract (sommario):
Additive manufacturing (AM) has recently gained much interest from researchers and industry practitioners due to the many advantages it offers as compared to the traditional subtractive manufacturing methods. These include the ability to fabricate net shaped complex geometries, integration of multiple parts, on-demand fabrication, and efficient raw material usage, among other benefits. Some of distinguishing features of AM metals, as compared to traditional subtractive manufacturing methods, include surface roughness, porosity and lack of fusion defects, residual stresses due to the thermal history of the part during the fabrication process, and anisotropy of the properties. Most components made of AM processes are subjected to cyclic loads, therefore, fatigue performance is an important consideration in their usage for safety critical applications. In addition, the state of stress at fatigue critical locations are often multiaxial. Considering the fact that many of the distinguishing features of AM metals are directional, the subject of multiaxial fatigue presents an important study area for a better understanding of their fatigue performance. This paper presents an overview of the aforementioned issues using recent data generated using AM Ti-6Al-4V and 17-4 PH stainless steel. Specimens were made by laser-based powder bed fusion and subjected to axial, torsion, and in-phase as well as out-of-phase loadings. A variety of conditions such as surface roughness, thermo-mechanical treatment, and notch effects are included. Many aspects are considered including damage mechanisms and crack paths, cyclic deformation, fatigue crack nucleation and growth, and stress concentration effects.
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Wang, Shengping, Yongjun Li, Mei Yao e Renzhi Wang. "Fatigue limits of shot-peened metals". Journal of Materials Processing Technology 73, n. 1-3 (gennaio 1998): 57–63. http://dx.doi.org/10.1016/s0924-0136(97)00212-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

MUGHRABI, H. "Cyclic plasticity and fatigue of metals". Le Journal de Physique IV 03, n. C7 (novembre 1993): C7–659—C7–668. http://dx.doi.org/10.1051/jp4:19937105.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Kabaldin, Yu G. "Nanostructuring of metals in fatigue loading". Russian Engineering Research 28, n. 6 (giugno 2008): 559–65. http://dx.doi.org/10.3103/s1068798x08060105.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Liu, Dan, Dirk John Pons e E. H. Wong. "Creep-integrated fatigue equation for metals". International Journal of Fatigue 98 (maggio 2017): 167–75. http://dx.doi.org/10.1016/j.ijfatigue.2016.11.030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Omar, M. K., A. G. Atkins e J. K. Lancaster. "The adhesive-fatigue wear of metals". Wear 107, n. 3 (febbraio 1986): 279–85. http://dx.doi.org/10.1016/0043-1648(86)90230-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

MOTZ, C., O. FRIEDL e R. PIPPAN. "Fatigue crack propagation in cellular metals". International Journal of Fatigue 27, n. 10-12 (ottobre 2005): 1571–81. http://dx.doi.org/10.1016/j.ijfatigue.2005.06.044.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Bowman, M. D., G. E. Nordmark e J. T. P. Yao. "Fuzzy logic approach in metals fatigue". International Journal of Approximate Reasoning 1, n. 2 (aprile 1987): 197–219. http://dx.doi.org/10.1016/0888-613x(87)90014-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Schleinkofer, U., H. G. Sockel, K. Go¨rting e W. Heinrich. "Fatigue of hard metals and cermets". Materials Science and Engineering: A 209, n. 1-2 (maggio 1996): 313–17. http://dx.doi.org/10.1016/0921-5093(95)10106-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Chen, Rui, Hongqian Xue e Bin Li. "Comparison of SP, SMAT, SMRT, LSP, and UNSM Based on Treatment Effects on the Fatigue Properties of Metals in the HCF and VHCF Regimes". Metals 12, n. 4 (10 aprile 2022): 642. http://dx.doi.org/10.3390/met12040642.

Testo completo
Abstract (sommario):
This paper aims to provide a better understanding regarding the effects of shot peening (SP), surface mechanical attrition treatment (SMAT), laser shock peening (LSP), surface mechanical rolling treatment (SMRT), and ultrasonic nanocrystal surface modification (UNSM) on the fatigue properties of metals in high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) regimes. The work in this paper finds that SMRT and UNSM generally improve the high-cycle and very-high-cycle fatigue properties of metals, while SP, SMAT, and LSP can have mixed effects. The differences are discussed and analyzed with respect to the aspects of surface finish, microstructure and microhardness, and residual stress. SMRT and UNSM generally produce a smooth surface finish, while SP and SMAT tend to worsen the surface finish on metals, which is harmful to their fatigue properties. In addition to inducing a plastic deformation zone and increasing microhardness, surface treatments can also generate a nanograin layer and gradient microstructure to enhance the fatigue properties of metals. The distribution of treatment-induced residual stress and residual stress relaxation can cause mixed effects on the fatigue properties of metals. Furthermore, increasing residual stress through SP and SMAT can cause further deterioration of the surface finish, which is detrimental to the fatigue properties of metals.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Szala, Grzegorz. "Influence of Stresses below the Fatigue Limit on Fatigue Life". Solid State Phenomena 224 (novembre 2014): 45–50. http://dx.doi.org/10.4028/www.scientific.net/ssp.224.45.

Testo completo
Abstract (sommario):
According to the performed analysis of fatigue phenomena occurring in metals, the effects of fatigue appear in the form of lines and slip bands under loading conditions producing variable stresses with values below the fatigue limit of these metals. It is commonly accepted that variable stresses with constant amplitude of values below 0.4 of the fatigue limit do not cause plastic strain in grains (lines and slip bands), thus they do not affect the fatigue life. This study is an attempt of quantitative assessment of the influence of stresses with values below the fatigue limit on fatigue life by using tests with programed two-step loading (variable-amplitude). Tests were performed with the use of C45 steel specimens.
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Balasubramanian, Shyam-Sundar, Chris Philpott, James Hyder, Mike Corliss, Bruce Tai e Wayne NP Hung. "Testing Techniques and Fatigue of Additively Manufactured Inconel 718 – A Review". International Journal of Engineering Materials and Manufacture 5, n. 4 (20 ottobre 2020): 156–94. http://dx.doi.org/10.26776/ijemm.05.04.2020.05.

Testo completo
Abstract (sommario):
Additive Manufacturing (AM) of metallic components shows unfavorable properties in their as-built state; surface roughness, anisotropy, residual stresses, and internal /surface defects are common issues that affect dynamic properties of AM metals. This paper reviews traditional fatigue testing techniques, summarizes published fatigue data for wrought and additively manufactured metals with focus on Inconel 718. Surface and volume defects of AM metals were presented and how post processing techniques could improve fatigue performance were shown. Different methods for normalizing fatigue data were explored due to varying results of different fatigue testing techniques.
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Gräfe, Wolfgang. "Fatigue of Cellulose Acetate and Ductile Metals". Advanced Materials Research 1154 (giugno 2019): 112–21. http://dx.doi.org/10.4028/www.scientific.net/amr.1154.112.

Testo completo
Abstract (sommario):
By a theoretical consideration of a viscous body it has been deduced a formula for the description of the fatigue properties of ductile metals and plastic materials. This formula has been compared with experimental fatigue data of Wöhler-curves (S-N curves). For cellulose acetate, iron, copper, nickel, silver, zinc and, to a restricted degree, also for aluminum a sufficient accordance between the experimental data and the theoretical curves has been reached. With this procedure it is possible to determine fatigue limits for these materials. Similar results are obtained for the creep of brass. It is supposed that the cause of the fatigue limit is the near surface stress of the specimen.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Itoh, Y. Z., e H. Kashiwaya. "Low-Cycle Fatigue Properties of Steels and Their Weld Metals". Journal of Engineering Materials and Technology 111, n. 4 (1 ottobre 1989): 431–37. http://dx.doi.org/10.1115/1.3226491.

Testo completo
Abstract (sommario):
Completely reversed, strain-controlled, low-cycle fatigue behavior at room temperature is investigated for steels and their weld metals. Weld metal specimens were taken from multi-pass weld metal deposited by shield metal arc welding (SMAW) and gas metal arc welding (GMAW), such that their gage length consisted entirely of the weld metal. Results indicate that there is a trend toward reduction in the low-cycle fatigue life of weld metals as compared with the base metals. In low carbon steel weld metals, the tendency described above is explained in terms of local plastic strain concentration by lack of uniformity of the multi-pass weld metals. The weld metals do not have the same mechanical properties anywhere as confirmed by hardness distribution, and the fatigue crack grows preferentially through the temper softened region in the multi-pass welds. In Type 308 stainless steel weld metals, the ductility reduction causes reductions in low-cycle fatigue life. This study leads to the conclusion that fairly accurate estimates of the low-cycle fatigue life of weld metals can be obtained using Manson’s universal slope method. However, life estimates of the Type 304 stainless steel is difficult due to a lack of ductility caused by a deformation-induced martensitic transformation.
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Matsuno, Hiroshi. "Fatigue Strength of Metals Containing Inclusions and Phase Inhomogeneity". Key Engineering Materials 353-358 (settembre 2007): 1090–93. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.1090.

Testo completo
Abstract (sommario):
Fatigue strength data of metals are picked up from literature and rearranged on the basis of the equivalent stress ratio which has previously been proposed by the author. The characteristics of fatigue strength are especially investigated for metals containing nonmetallic inclusions and phase in-homogeneity. As a result, it is found that σ w2 -type fatigue strength is often exhibited even in a specimen without a notch and it leads to a wide range of scattering of fatigue strength of unnotched specimens.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Alderiesten, René. "Fatigue in fibre metal laminates: The interplay between fatigue in metals and fatigue in composites". Fatigue & Fracture of Engineering Materials & Structures 42, n. 11 (26 febbraio 2019): 2414–21. http://dx.doi.org/10.1111/ffe.12995.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Cavaliere, Pasquale. "Low Cycle Fatigue of Electrodeposited Pure Nanocrystalline Metals". Materials Science Forum 561-565 (ottobre 2007): 1299–302. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1299.

Testo completo
Abstract (sommario):
The fatigue behavior of metals is strongly governed by the grain size variation. As the tensile strength, the fatigue limit increases with decreasing grain size in the microcrystalline regime. A different trend in mechanical properties has been demonstrated in many papers for metals with ultrafine (< 1 m) and nanocrystalline (< 100 nm) grain size in particular in the yield stress and fatigue crack initiation and growth. The fatigue behavior of electrodeposited nanocrystalline Ni (20 and 40 nm mean grain size) and nanocrystalline Co (20 nm) has been analyzed in the present paper by means of stress controlled tests. The monothonic mechanical properties of the materials were obtained from tensile tests by employing an Instron 5800 machine by measuring the strain with an extensometer up to 2.5% maximum strain. The strain gage specimen dimensions measured 20 mm length and 5 mm width, all the specimens were produced by electro-discharge machining. The low cycle fatigue tests were performed with specimens of the same geometry of the tensile ones in tension-tension with load ratio R=0.25. The fatigue crack propagation experiments were carried out by employing single edge notched specimens measuring 39 mm in length, 9.9 mm in width and with an electro-discharge machined edge-notch of 1 mm. All the endurance fatigue and crack propagation tests were performed at 10 Hz.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Hajshirmohammadi, Behnam, e Michael M. Khonsari. "Application of thermoelectricity in fatigue of metals". Fatigue & Fracture of Engineering Materials & Structures 44, n. 5 (25 gennaio 2021): 1162–77. http://dx.doi.org/10.1111/ffe.13421.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Li, Xiaoyan, Ming Dao, Christoph Eberl, Andrea Maria Hodge e Huajian Gao. "Fracture, fatigue, and creep of nanotwinned metals". MRS Bulletin 41, n. 4 (aprile 2016): 298–304. http://dx.doi.org/10.1557/mrs.2016.65.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Becker, Thorsten Hermann, Punit Kumar e Upadrasta Ramamurty. "Fracture and fatigue in additively manufactured metals". Acta Materialia 219 (ottobre 2021): 117240. http://dx.doi.org/10.1016/j.actamat.2021.117240.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Balasubramanian, Shyam-Sundar, Chris Philpott, James Hyder, Mike Corliss, Bruce Tai e Wayne Hung. "Novel Fatigue Tester for Additively Manufactured Metals". Procedia Manufacturing 53 (2021): 525–34. http://dx.doi.org/10.1016/j.promfg.2021.06.054.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Vincent, Alain, e Roger Fougères. "Fatigue and Internal Friction of FCC Metals". Materials Science Forum 119-121 (gennaio 1993): 69–82. http://dx.doi.org/10.4028/www.scientific.net/msf.119-121.69.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

SEKI, Hironori, Masakazu TANE e Hideo NAKAJIMA. "Fatigue Strength of Lotus-type Porous Metals". Journal of High Temperature Society 34, n. 2 (2008): 56–59. http://dx.doi.org/10.7791/jhts.34.56.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

McDowell, David L. "Multiaxial small fatigue crack growth in metals". International Journal of Fatigue 19, n. 93 (giugno 1997): 127–35. http://dx.doi.org/10.1016/s0142-1123(97)00014-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Tirosh, Jehuda, e Sharon Peles. "Bounds on the fatigue threshold in metals". Journal of the Mechanics and Physics of Solids 49, n. 6 (giugno 2001): 1301–22. http://dx.doi.org/10.1016/s0022-5096(00)00076-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Luong, M. P. "Infrared thermographic scanning of fatigue in metals". Nuclear Engineering and Design 158, n. 2-3 (settembre 1995): 363–76. http://dx.doi.org/10.1016/0029-5493(95)01043-h.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

KANAZAWA, Kenji. "How Dose Fatigue Fracture Occur in Metals?" Journal of the Japan Society for Precision Engineering 73, n. 3 (2007): 322–25. http://dx.doi.org/10.2493/jjspe.73.322.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Weiss, Menachem P., e Erel Lavi. "Fatigue of metals – What the designer needs?" International Journal of Fatigue 84 (marzo 2016): 80–90. http://dx.doi.org/10.1016/j.ijfatigue.2015.11.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Mortezavi, Vahid, Ali Haghshenas, M. M. Khonsari e Bart Bollen. "Fatigue analysis of metals using damping parameter". International Journal of Fatigue 91 (ottobre 2016): 124–35. http://dx.doi.org/10.1016/j.ijfatigue.2016.05.011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

HANLON, T., E. TABACHNIKOVA e S. SURESH. "Fatigue behavior of nanocrystalline metals and alloys". International Journal of Fatigue 27, n. 10-12 (ottobre 2005): 1147–58. http://dx.doi.org/10.1016/j.ijfatigue.2005.06.035.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Makkonen, M. "Predicting the total fatigue life in metals". International Journal of Fatigue 31, n. 7 (luglio 2009): 1163–75. http://dx.doi.org/10.1016/j.ijfatigue.2008.12.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Romaniv, O. N., B. N. Andrusiv e V. I. Borsukevich. "Crack formation in fatigue of metals (review)". Soviet Materials Science 24, n. 1 (1988): 1–10. http://dx.doi.org/10.1007/bf00722573.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Gonçalves, Camilla de Andrade, José Alexander Araújo e Edgar Nobuo Mamiya. "A simple multiaxial fatigue criterion for metals". Comptes Rendus Mécanique 332, n. 12 (dicembre 2004): 963–68. http://dx.doi.org/10.1016/j.crme.2004.09.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

NICOLETTO, G. "Plastic zones about fatigue cracks in metals". International Journal of Fatigue 11, n. 2 (marzo 1989): 107–15. http://dx.doi.org/10.1016/0142-1123(89)90005-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Troshchenko, V. T. "Nonlocalized fatigue damage to metals and alloys". Materials Science 42, n. 1 (gennaio 2006): 20–33. http://dx.doi.org/10.1007/s11003-006-0054-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Zhou, Xiaoling, Xiaoyan Li e Changqing Chen. "Atomistic mechanisms of fatigue in nanotwinned metals". Acta Materialia 99 (ottobre 2015): 77–86. http://dx.doi.org/10.1016/j.actamat.2015.07.045.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Arakawa, Jinta, Tatsuya Hanaki, Yoshiichirou Hayashi, Hiroyuki Akebono e Atsushi Sugeta. "Effect of surface compressive residual stress introduced by surface treatment on fatigue properties of metallic material". MATEC Web of Conferences 165 (2018): 18006. http://dx.doi.org/10.1051/matecconf/201816518006.

Testo completo
Abstract (sommario):
This study considers shakedown in evaluating the fatigue limit of metals with compressive residual stress at the surface. We begin by applying tension-compression fatigue tests to ASTM CA6NM under conditions of controlled load and displacement to obtain fatigue limit diagram in compressive mean stress. The results imply that shakedown occurs under the condition of controlled displacement, therefore, shakedown should be considered when evaluating the fatigue limit of metals with compressive residual stress at the surface.
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Ihara, C., e T. Misawa. "Stochastic Models Related to Fatigue Damage of Materials". Journal of Energy Resources Technology 113, n. 4 (1 dicembre 1991): 215–21. http://dx.doi.org/10.1115/1.2905903.

Testo completo
Abstract (sommario):
The stochastic models for the fatigue damage phenomena are proposed. They describe the uncertainty caused by inhomogeneity of materials for fatigue crack propagation of metals and fatigue damage of carbon fiber composite (CFRP). The models are given by the stochastic differential equations derived from the randomized Paris-Erdogan’s fatigue crack propagation law and Kachonov’s equation of fatigue damage. The sample paths and life distribution of fatigue crack propagation in metals or of damage accumulation in CFRP are obtained by using the solution of the stochastic differential equation and the probability density function, respectively. These theoretical results are compared with the actual experiments—fatigue crack propagation of high tensile strength steel APFH 60 and fatigue test for a carbon eight-harness-satin/epoxy laminate—through numerical experiments.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Soyama, Hitoshi, Michela Simoncini e Marcello Cabibbo. "Effect of Cavitation Peening on Fatigue Properties in Friction Stir Welded Aluminum Alloy AA5754". Metals 11, n. 1 (30 dicembre 2020): 59. http://dx.doi.org/10.3390/met11010059.

Testo completo
Abstract (sommario):
Friction stir welding (FSW) is an attractive solid-state joining technique for lightweight metals; however, fatigue properties of FSWed metals are lower than those of bulk metals. A novel mechanical surface treatment using cavitation impact, i.e., cavitation peening, can improve fatigue life and strength by introducing compressive residual stress into the FSWed part. To demonstrate the enhancement of fatigue properties of FSWed metal sheet by cavitation peening, aluminum alloy AA5754 sheet jointed by FSW was treated by cavitation peening using cavitating jet in air and water and tested by a plane bending fatigue test. The surface residual stress of the FSWed part was also evaluated by an X-ray diffraction method. It was concluded that the fatigue life and strength of FSWed specimen were improved by cavitation peening. Whereas the fatigue life at σa = 150 MPa of FSWed specimen was about 1/20 of the bulk sheet, cavitation peening was able to extend the fatigue life of the non-peened FSW specimen by 3.6 times by introducing compressive residual stress into the FSWed part. This is the first paper to demonstrate the improvement of fatigue properties of FSWed metallic sheet by cavitation peening.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia