Letteratura scientifica selezionata sul tema "Metals Fatigue"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Metals Fatigue".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Metals Fatigue"
Correia, J. A. F. O., A. M. P. De Jesus, I. F. Pariente, J. Belzunce e A. Fernández-Canteli. "Mechanical fatigue of metals". Engineering Fracture Mechanics 185 (novembre 2017): 1. http://dx.doi.org/10.1016/j.engfracmech.2017.10.029.
Testo completoPolák, Jaroslav, Jiří Man e Ivo Kuběna. "The True Shape of Persistent Slip Markings in Fatigued Metals". Key Engineering Materials 592-593 (novembre 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.
Testo completoEnomoto, Masatoshi. "Prediction of Fatigue Life for Light Metals and their Welded Metals". Materials Science Forum 794-796 (giugno 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/msf.794-796.273.
Testo completoKAWAGOISHI, Norio, Qiang CHEN, Masahiro GOTO, Qingyuan WANG e Hironobu NISITANI. "Ultrasonic Fatigue Properties of Metals". Proceedings of Conference of Kyushu Branch 2003 (2003): 47–48. http://dx.doi.org/10.1299/jsmekyushu.2003.47.
Testo completoTROSHCHENKO, V. T. "Fatigue fracture toughness of metals". Fatigue & Fracture of Engineering Materials & Structures 32, n. 4 (aprile 2009): 287–91. http://dx.doi.org/10.1111/j.1460-2695.2009.01343.x.
Testo completoFonseca de Oliveira Correia, José António, Miguel Muñiz Calvente, Abílio Manuel Pinho de Jesus e Alfonso Fernández-Canteli. "ICMFM18-Mechanical fatigue of metals". International Journal of Structural Integrity 8, n. 6 (4 dicembre 2017): 614–16. http://dx.doi.org/10.1108/ijsi-10-2017-0055.
Testo completoPineau, André, David L. McDowell, Esteban P. Busso e Stephen D. Antolovich. "Failure of metals II: Fatigue". Acta Materialia 107 (aprile 2016): 484–507. http://dx.doi.org/10.1016/j.actamat.2015.05.050.
Testo completoVinogradov, A., e S. Hashimoto. "Fatigue of Severely Deformed Metals". Advanced Engineering Materials 5, n. 5 (16 maggio 2003): 351–58. http://dx.doi.org/10.1002/adem.200310078.
Testo completoTeng, N. J., e T. H. Lin. "Elastic Anisotropy Effect of Crystals on Polycrystal Fatigue Crack Initiation". Journal of Engineering Materials and Technology 117, n. 4 (1 ottobre 1995): 470–77. http://dx.doi.org/10.1115/1.2804741.
Testo completoLowe, Terry C. "Enhancing Fatigue Properties of Nanostructured Metals and Alloys". Advanced Materials Research 29-30 (novembre 2007): 117–22. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.117.
Testo completoTesi sul tema "Metals Fatigue"
Nowicki, Timothy. "Statistical model prediction of fatigue life for diffusion bonded Inconel 600 /". Online version of thesis, 2008. http://hdl.handle.net/1850/7984.
Testo completoFernandes, Paulo Jorge Luso. "Fatigue and fracture of metals in liquid-metal environments". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337963.
Testo completoLunt, William S. "Molecular dynamics simulation of fatigue damage in metals". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FLunt.pdf.
Testo completoErasmus, Daniel Jacobus. "The fatigue life cycle prediction of a light aircraft undercarriage". Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1527.
Testo completoWilliams, Zachary. "Krouse Fatigue for Metals with Elevated Mean Stress". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1597075964521893.
Testo completoRepetto, Eduardo A. Ortiz Michael. "On the fatigue behavior of ductile F.C.C. metals /". Diss., Pasadena, Calif. : California Institute of Technology, 1998. http://resolver.caltech.edu/CaltechETD:etd-01242008-133649.
Testo completoZhao, Tianwen. "Fatigue of aluminum alloy 7075-T651 /". abstract and full text PDF (UNR users only), 2009. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3342620.
Testo completo"December, 2008." Includes bibliographical references (leaves 76-83). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2009]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Morrissey, Ryan J. "Frequency and mean stress effects in high cycle fatigue of Ti-6A1-4V". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/17095.
Testo completoJin, Ohchang. "The characterization of small fatigue crack growth in PH13-8 Mo stainless steel". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/19633.
Testo completoGhodratighalati, Mohamad. "Multiscale Modeling of Fatigue and Fracture in Polycrystalline Metals, 3D Printed Metals, and Bio-inspired Materials". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104944.
Testo completoDoctor of Philosophy
The goal of this research is developing a multiscale framework to study the details of fracture and fatigue for the rolling contact in rails, additively manufactured alloys, and bio-inspired hierarchical materials. Rolling contact fatigue (RCF) is a major source of failure and a dominant cause of maintenance and replacements in many railways around the world. Different computational models are developed for studying rolling contact fatigue in rail materials. The method can predict RCF life and simulate crack initiation sites under various conditions and the results will help better maintenance of the railways and increase the safety of trains. The developed model is employed to study the fracture and fatigue behavior in 3D printed metals created by the selective laser melting (SLM) method. SLM method as a part of metal additive manufacturing (AM) technologies is revolutionizing industries including biomedical, automotive, aerospace, energy, and many others. Since experiments on 3D printed metals are considerably time-consuming and expensive, computational analysis is a proper alternative to reduce cost and time. Our method for studying the fatigue at the microstructural level of 3D printed alloys can help to create more fatigue and fracture resistant materials. In the last section, we have studied fracture behavior in bio-inspired materials. A fundamental problem in engineering is how to find the design that exhibits the best combination of mechanical properties. Biological materials like bone, nacre, and teeth are constructed from simple building blocks and show a surprising combination of high strength and toughness. By inspiring from these materials, we have simulated fracture behavior of a pre-designed composite material consisting of soft and stiff building blocks. The results show a better performance of bio-inspired structure compared to its building blocks. Furthermore, an optimization method is implemented into the designing the bio-inspired structures for the first time, which enables us to perform the bio-inspired material design with the target of finding the most efficient geometries that can resist defects in their structure.
Libri sul tema "Metals Fatigue"
1954-, Hejwowski Tadeusz, a cura di. Thermal fatigue of metals. New York: M. Dekker, 1991.
Cerca il testo completoSchijve, Jaap. Biaxial Fatigue of Metals. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23606-3.
Testo completoBathias, Claude. Fatigue Limit in Metals. Hoboken, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118648704.
Testo completoCorreia, José A. F. O., Abílio M. P. De Jesus, António Augusto Fernandes e Rui Calçada, a cura di. Mechanical Fatigue of Metals. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13980-3.
Testo completoCardona, D. C. Fatigue of brittle metals. Birmingham: University of Birmingham, 1990.
Cerca il testo completoI, Stephens R., e Fuchs H. O. 1907-, a cura di. Metal fatigue in engineering. 2a ed. New York: Wiley, 2001.
Cerca il testo completoDang, Van Ky, e Papadopoulos Iōannēs V, a cura di. High-cycle metal fatique: From theory to applications. Wien: Springer, 1999.
Cerca il testo completoJ, Comer Jess, e Handrock James L, a cura di. Fundamentals of metal fatigue analysis. Englewood Cliffs, N.J: Prentice Hall, 1990.
Cerca il testo completo1935-, Marsh K. J., e Pook L. P, a cura di. Metal fatigue. Mineola, NY: Dover Publications, 1999.
Cerca il testo completoMilella, Pietro Paolo. Fatigue and Corrosion in Metals. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-2336-9.
Testo completoCapitoli di libri sul tema "Metals Fatigue"
Kaesche, Helmut. "Corrosion Fatigue". In Corrosion of Metals, 525–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-96038-3_16.
Testo completoCarlson, R. L., G. A. Kardomateas e J. I. Craig. "Fatigue in Metals". In Solid Mechanics and Its Applications, 19–39. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4252-9_3.
Testo completoMilella, Pietro Paolo. "Fatigue Testing. Fatigue Curve Construction and Fatigue Limit Assessment". In Fatigue and Corrosion in Metals, 431–78. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_10.
Testo completoMilella, Pietro Paolo. "Corrosion Fatigue". In Fatigue and Corrosion in Metals, 767–806. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_16.
Testo completoMilella, Pietro Paolo. "Multiaxial Fatigue". In Fatigue and Corrosion in Metals, 477–520. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_9.
Testo completoMilella, Pietro Paolo. "Corrosion Fatigue". In Fatigue and Corrosion in Metals, 885–923. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_20.
Testo completoMilella, Pietro Paolo. "Multiaxial Fatigue". In Fatigue and Corrosion in Metals, 593–636. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-51350-3_13.
Testo completoBhaduri, Amit. "Fatigue". In Mechanical Properties and Working of Metals and Alloys, 317–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7209-3_8.
Testo completoMilella, Pietro Paolo. "Stress-Based Fatigue Analysis High Cycle Fatigue". In Fatigue and Corrosion in Metals, 245–308. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_5.
Testo completoMilella, Pietro Paolo. "Strain-Based Fatigue Analysis Low Cycle Fatigue". In Fatigue and Corrosion in Metals, 309–63. Milano: Springer Milan, 2012. http://dx.doi.org/10.1007/978-88-470-2336-9_6.
Testo completoAtti di convegni sul tema "Metals Fatigue"
Mamiya, Edgar Nobuo, e José Alexander Araújo. "A Criterion to Predict the Fatigue Strength of Hard Metals under Multiaxial Loading". In SAE Brasil International Conference on Fatigue. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-4065.
Testo completoLuong, Minh Phong. "Infrared thermography of fatigue in metals". In Aerospace Sensing, a cura di Jan K. Eklund. SPIE, 1992. http://dx.doi.org/10.1117/12.58539.
Testo completo"The Development of Fatigue Cracks in Metals". In Experimental Mechanics of Solids. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900215-18.
Testo completoLuong, Minh Phong. "Fatigue evaluation of metals using infrared thermography". In Second International Conference on Experimental Mechanics, a cura di Fook S. Chau e Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429590.
Testo completoXue, Yibin, Tong Li e Frank Abdi. "Fatigue Damage Initiation Life Prediction for Heterogeneous Metals". In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1653.
Testo completoKrapez, J. C., D. Pacou e G. Gardette. "Lock-in thermography and fatigue limit of metals". In 2000 Quantitative InfraRed Thermography. QIRT Council, 2000. http://dx.doi.org/10.21611/qirt.2000.051.
Testo completoEwenz, L. "Approach to transferring force-based fatigue curves into stress-related fatigue curves for clinch joints". In Sheet Metal 2023. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902417-18.
Testo completoSan Marchi, Chris, e Brian P. Somerday. "Fatigue Crack Growth of Structural Metals for Hydrogen Service". In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57701.
Testo completoVshivkov, A., A. Iziumova e O. Plekhov. "Experimental study of thermodynamics propagation fatigue crack in metals". In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932925.
Testo completoBoyce, Brad, Christopher Barr, Ta Duong, Daniel Bufford, A. Molkeri, Nathan Heckman, David Adams, A. Srivastava, Khalid Hattar e Michael Demkowicz. "Implications of Fatigue-Crack Healing in Nanocrystalline Metals [Slides]". In TMS 2022 Annual Meeting & Exhibition, Anaheim, CA (United States), 27 Feb- 3 Mar 2022. US DOE, 2023. http://dx.doi.org/10.2172/2002234.
Testo completoRapporti di organizzazioni sul tema "Metals Fatigue"
Farkas, Diana. Atomistic Mechanisms of Fatigue in Nanocrystalline Metals. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2004. http://dx.doi.org/10.21236/ada438940.
Testo completoHertzberg, Richard W. Fatigue and Fracture Mechanics of Structural Metals, Plastics, and Composites. Fort Belvoir, VA: Defense Technical Information Center, agosto 1986. http://dx.doi.org/10.21236/ada173064.
Testo completoLewandowski, John J. Microstructural Effects on Fracture and Fatigue of Advanced Refractory Metals and Composites. Fort Belvoir, VA: Defense Technical Information Center, giugno 2001. http://dx.doi.org/10.21236/ada387898.
Testo completoGuralnick. Hysteresis and Acoustic Emission as Non-Destructive Measures of the Fatigue Process in Metals. Fort Belvoir, VA: Defense Technical Information Center, marzo 1995. http://dx.doi.org/10.21236/ada295602.
Testo completoHackel, L. A., e H.-L. Chen. Laser Peening--Strengthening Metals to Improve Fatigue Lifetime and Retard Stress-Induced Corrosion Cracking in Gears, Bolts and Cutter. Office of Scientific and Technical Information (OSTI), agosto 2003. http://dx.doi.org/10.2172/15004997.
Testo completoMaxey. L51427 ERW Weld Zone Characteristics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), giugno 1992. http://dx.doi.org/10.55274/r0011187.
Testo completoRiveros, Guillermo, e Hussam Mahmoud. Underwater carbon fiber reinforced polymer (CFRP)–retrofitted steel hydraulic structures (SHS) fatigue cracks. Engineer Research and Development Center (U.S.), marzo 2023. http://dx.doi.org/10.21079/11681/46588.
Testo completoBi, Yunpeng, Xi Li, Huixin Yan, Xiaomei Zhang, Hongyi Guan, Haiyu Zhu, Tingwei Ding e Bailin Song. Acupoint massage for chronic fatigue syndrome:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, aprile 2023. http://dx.doi.org/10.37766/inplasy2023.4.0083.
Testo completoRosenfeld e Kiefner. L52270 Basics of Metal Fatigue in Natural Gas Pipeline Systems - A Primer for Gas Pipeline Operators. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), novembre 2004. http://dx.doi.org/10.55274/r0010154.
Testo completoWang, Yanli, Peijun Hou e Sam Sham. Report on FY 2020 creep, fatigue and creep fatigue testing of Alloy 709 base metal at ORNL. Office of Scientific and Technical Information (OSTI), settembre 2020. http://dx.doi.org/10.2172/1671410.
Testo completo