Tesi sul tema "Membrane nanodomains"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-15 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Membrane nanodomains".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Legrand, Anthony. "Anchoring mechanism of the plant protein remorin to membrane nanodomains". Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0285.
Testo completoGroup 1 isoform 3 remorin from Solanum tuberosum (StREM1.3) is a membrane protein belonging to the multigenic family of plant proteins called remorins (REMs), involved in plant immunity, symbiosis, abiotic stress resistance and hormone signalling. REMs’ most well known feature is their ability to segregate into nanodomains at the plasma membrane’s (PM) inner leaflet. For StREM1.3, this is achieved by an interaction between two lysines of the remorin C-terminal anchor (RemCA) and negatively charged phosphatidylinositol 4-phosphate (PI4P). Thus, RemCA undergoes conformational changes and partially buries itself in the PM, resulting in an intrinsic membrane anchoring. Capitalising on pre-existing structural data about this isoform, we investigate StREM1.3’s membrane-interacting properties further, using a wide array of techniques, ranging from fluorescence microscopy and solid-state nuclear magnetic resonance (ssNMR) to atomic force microscopy (AFM), cryo-electron microscopy (cryoEM) and computational modelling. We aim to discover the impact of StREM1.3’s oligomerisation and phosphorylation on its membrane interactions and biological activity, and to assess its influence on lipid dynamics as well as its lipid requirements for membrane binding and nanoclustering. Finally, based on all available structural data, we will undertake the in vitro reconstruction and characterisation of minimal nanodomains of StREM1.3
Hebisch, Elke [Verfasser], e Stefan W. [Akademischer Betreuer] Hell. "STED microscopy of cardiac membrane nanodomains / Elke Hebisch ; Betreuer: Stefan W. Hell". Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1180740068/34.
Testo completoHebisch, Elke [Verfasser], e Stefan [Akademischer Betreuer] Hell. "STED microscopy of cardiac membrane nanodomains / Elke Hebisch ; Betreuer: Stefan W. Hell". Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-227475.
Testo completoDeroubaix, Anne-Flore. "Rôle de la rémorine et des nanodomaines membranaires dans la signalisation de la réponse aux phytovirus". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0292.
Testo completoIn the battle against viruses, plants have evolved various defence mechanisms to protect themselves against pathogens. Membrane-bound plant proteins such as Remorin (REM) may restrict viral infection. REMs belong to a plant-specific multigene family, classified in six phylogenetic groups that are localized in plasma membrane nanodomains and for some of them in plasmodesmata. Our team previously showed that in tomato and Nicotiana benthamiana, overexpression of Solanum tuberosum group 1 isoform 3 (StREM1.3) limits the cell-to-cell spread of the potexvirus Potato virus X (PVX) without affecting viral replication. During my thesis, our data allowed to built a working model in which the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3 (AtCPK3) is able to interact with group 1 REM in vivo, phosphorylates the N-terminal domain of StREM1.3 and, finally, with the help of uncharacterized proteins lead to the restriction of PVX cell-to-cell movement in N.benthamiana. N.benthamiana is perfect for viral experimentation, but is allo-tetraploid, making it difficult for genetic studies. Because of CPKs have 34 isoforms with likely functional redundancy between them, we switched to another pathosystem using the genetic toolbox of Arabidopsis thaliana and a potexvirus species able to infect A. thaliana, the Plantago Asiatica Mosaic Virus (PlAMV). The objectives are 1/ to study the contribution of different REM clades in potexvirus intercellular movement; 2/ to understand which CPKs are involved in this process using REM and CPKs single and multiple mutants, as well as AtCPKs over-expressors; 3/ To study the contribution of Group 1 REM and CPK3 on systemic potexvirus movement. We previously showed that, like PVX, PlAMV local movement is restricted by StREM1.3 and AtCPK3 in N.benthamiana. We optimized the experimental conditions to track and compare GFP-tagged PlAMV in different Arabidopsis genetic backgrounds. By using this method, we were able to track both local virus cell-to-cell movement and systemic infection through the whole plant. Group 1 REM and CPK single and multiple knock out mutants, as well as CPK over-expressors wereused. Interestingly, we did not detect any difference in propagation compared with control on various CPKs KO, except in cpk3 mutant. Indeed, both in local and systemic, PlAMV propagation is enhanced on cpk3 mutant while CPK3 overexpressing lines display an opposite effect, demonstrating the great involvement of CPK3 in potexvirus propagation. Similarly, we demonstrate the redundancy of each isoform from group 1 REM on the restriction of the intercellular movement of PlAMV. Interestingly, REM promotes intercellular propagation of another viral genus, the potyvirus genus, suggesting that REM functions are not general for all genera. Globally, our results classify group 1 REM and CPK3 as antiviral defence protein both in local and systemic potexvirus infection, and suggest that REM function is viral genus dependent. This research will pave the way toward new host targets to fight phytovirus infection
Gronnier, Julien. "Function of Plant Plasma Membrane Nanodomains : Study of Group 1 REMORINs during Plant-Virus Interactions". Electronic Thesis or Diss., Bordeaux, 2016. http://www.theses.fr/2016BORD0327.
Testo completoOrganization by compartmentalization is a general property of natural systems coordinating biological events in space and time. Over the past three decades, it has been demonstrated that multiple micrometric to nano-metric sub-compartments co-exist at a single membrane level. Such membrane organization seems critical for most all cell bioactivities and therefore critical for development and survival of potentially all living organisms. Plants respond to pathogens by activating highly regulated plasma membrane-bound signalling pathways. Plant plasma membrane (PM) displays a great diversity of compartments, but underlying functions and molecular mechanisms governing such organization are not well understood. To get insight in how and why plant PM is compartmentalized, we choose to study the plant PM nanodomain goup 1 REMORIN during the interaction between N. benthamiana and the Potato Virus X (PVX). Using a multidisciplinary approach we decipher a molecular mechanism involved in defining REMORIN PM domains localization. Making mutants we provide a functional link between REMORIN PM organization at single molecule level, its phosphostatus, regulation of plasmodesmata permeability and PVX cell-to-cell movement restriction. We then provide evidences that during N.benthamiana PVX sensing, PM organization appears critical for the modulation plant defence mechanisms and cell signaling. This study provides a unique mechanistic insight into how tight control of protein spatio-temporal organization at PM level is crucial to confer membrane domains identity and functionality
Liang, Pengbo [Verfasser], e Thomas [Akademischer Betreuer] Ott. "The role of membrane nanodomains and the cell wall-plasma membrane-cytoskeleton continuum during symbiotic infection in Medicago truncatula". Freiburg : Universität, 2020. http://d-nb.info/1220631760/34.
Testo completoKirsch, Sonja [Verfasser], Rainer [Akademischer Betreuer] Böckmann e Rainer [Gutachter] Böckmann. "The Role of Membrane Nanodomains in Permeation / Sonja Kirsch ; Gutachter: Rainer Böckmann ; Betreuer: Rainer Böckmann". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1196875901/34.
Testo completoYandrapalli, Naresh. "Role of HIV-1 Gag protein multimerization in the generation of nanodomains in lipid membranes". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT097/document.
Testo completoGag polyprotein of HIV-1 is made of four main domains Matrix (MA), Capsid (CA), Nucleocapsid (NC), and P6 and is the prime orchestrator of virus assembly that occurs during the late phase of replication. It is well known that Gag interacts with host cell lipids and self-assemble along the inner-leaflet of the plasma membrane in order to generate virus like particles (VLPs). Budding of these VLPs out of the living cell is described to be ESCRT dependent. Structural, functional and simulation based studies has shown that Gag membrane binding is mediated by a bipartite interaction. One specific electrostatic interaction, between the highly basic region (HBR) of its MA domain and the host cell acidic lipid phosphatidyl inositol bisphophate (PI(4,5)P2), plus a hydrophobic interaction through Gag’s myristate insertion in the plasma membrane. It is still an opened question whether Gag would specifically recognize pre-existing lipid domains such as rafts to optimize its multimerization or, on the contrary, would reorganize lipids during its multimerization. During my Ph.D. I explored the second hypothesis using purified myr(-) Gag protein and model membranes containing fluorescently labelled PI(4,5)P2.Bonding experiments have shown strong affinities of these purified proteins towards PI(4,5)P2 containing lipid bilayers. Using PI(4,5)P2 fluorescence self-quenching properties, I found that multimerization Gag generates PI(4,5)P2/Cholesterol enriched nanoclusters. On the opposite, sphingomyelin was excluded from these nanoclusters. In addition to this, using a fluorescently labelled myr(-) Gag, I have observed its preferable partitioning into lipid disordered (Ld) phases of giant unilamellar vesicles (GUVs). Further, possibility of whether HIV-1 Gag alone, as a minimal system, can induce the formation of vesicles on PI(4,5)P2/PS containing supported lipid bilayers (SLBs) & GUVs was tested. Using quartz crystal microbalance (QCM-D) and fluorescence microscopy techniques, I monitored the self-assembly of HIV-1 Gag with time and found that Gag was sufficient to generate membrane curvature and vesicle release. Moreover, using mutants of this protein, I found that having MA and CA domain is enough for Gag to produce vesicle like structures. Taken together, these results suggest that binding and multimerization of Gag protein does not occur in pre-existing lipid domains (such as “rafts”) but this multimerization is more likely to induce PI(4,5)P2/Cholesterol nanoclusters. This nanophase separation could locally play a role in the membrane curvature needed for the budding of the virus
Yu, Chao. "Quantitative Study of Membrane Nano-organization by Single Nanoparticle Imaging". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX054.
Testo completoIn this thesis, EGF, CPεT and transferrin receptors were labeled with luminescent nanoparticles, , and were tracked both in their local environment in the cell membrane and under a hydrodynamic flow. Bayesian inference, Bayesian decision tree, and data clustering techniques can then be applied to obtain quantitative information on the receptor motion parameters. Furthermore, we introduced hydrodynamic force application in vitro to study biomolecule dissociation between membrane receptors and their pharmaceutical ligands in high affinity receptor- ligand pairs, such as HB-EGF and DTR. Finally, three different modes of membrane organization and receptor confinement were revealed: the confinement of CPεTR is determined by the interaction between the receptors and the lipid/protein constituents of the raft; the confining potential of EGFR results from the interaction with lipids and proteins of the raft environment and from the interaction with F-actin; transferrin receptors diffuse freely in the membrane, only sterically limited by actin barriers, according to the “picket-and-fence” model. We moreover showed that all raft nanodomains are attached to the actin cytoskeleton
Noack, Lise. "Rôle du complexe AtPI4Kalpha1 dans l’établissement de l’identité de la membrane plasmique et le développement chez Arabidopsis thaliana". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN066.
Testo completoEukaryotic cells are composed of several membrane-surrounded compartments. Each compartment has a unique physicochemical environment delimited by a membrane with a specific biochemical and biophysical identity. The membrane identity includes the nature of the lipids, the curvature, the electrostaticity and the density of lipids at the membrane. The identity of each membrane allows the proper localization of membrane-associated proteins. Phosphoinositides are rare anionic lipids present in membranes. Five types of phosphoinositides exist in plants - PI3P, PI4P, PI5P, PI(4,5)P2 and PI(3,5)P2 - depending of the number and the position of phosphates around the inositol ring. They accumulate differently at the plasma membrane and in intracellular compartments and interact with proteins through stereo-specific or electrostatic interactions. Recent work uncovered that PI4P concentrates according to an inverted gradient by comparison to their yeast and animal counterpart. In plants, PI4P massively accumulates at the plasma membrane and is present in fewer amounts at the trans-Golgi Network (TGN). This PI4P accumulation at the cell surface drives the plasma membrane electrostatic field, which in turn recruits a host of signalling proteins to this compartment. Moreover the plant TGN is the place of vesicular secretion but is also involved in endocytic sorting and recycling, which might imply regulatory mechanisms of lipid exchanges or membrane identity maintenance between the plasma membrane and the TGN. Here, we characterized PI4Kα1 mutants and showed that pi4kα1 loss-of-function leads to pollen grain lethality and distortion in the allele transmission via the female gametophyte, while its knockdown displayed strong developmental phenotypes. Using yeast two hybrid screening and mass spectrometry, we identified that PI4Kα1 is part of an heterotetrameric complex composed of NO POLLEN GERMINATION (NPG), EFR3 OF PLANTS (EFOP) and HYCCIN (HYC). The interaction between PI4Kα1 and the structural subunits of the complex is essential to target PI4Kα1 at the plasma membrane. In addition, we showed that PI4Kα1 complex is anchored in immobile and predefined subdomains of the plasma membrane. This work opens new perspectives on the role of the PI4Kα1 complex in plasma membrane suborganization
Xu, Zeren. "Le rôle et les mécanismes de l'assemblage de REMORIN". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0307.
Testo completoRemorins are multifunctional proteins that play vital roles in plant immunity, development, and symbiosis by associating with the plasma membrane and sequestering specific lipids into functional membrane nanodomains. These proteins are classified into a multigenic family with six groups characterized by distinct protein-domain compositions. All remorin family members share a C-terminal membrane anchor (REM-CA), a homo-oligomerization domain, and the N-terminal is an intrinsically disordered region (IDR) of variable length. Uniquely, REMs bypass the secretory pathway for membrane targeting and localize to different nanodomains based on their phylogenetic group. In this study, we combined Nuclear Magnetic Resonance (NMR) spectroscopy, protein structure calculations, and advanced molecular dynamics (MD) simulations to reveal the structural and dynamic properties of REMs. We discovered that remorins form stable pre-structured coiled-coil dimers in the cytosol, which act as tunable nanodomain-targeting units. These dimers feature a REM-dependent barcode-like positive surface charge before membrane association. Furthermore, the REM-CAs exhibit structural and dynamic variations across the family, providing a selective platform for phospholipid binding upon membrane contact. The N-terminal IDR forms a flexible fuzzy structural ensemble around the coiled-coil core. The C-terminal anchors create avidity through multivalent electrostatic interactions between anionic lipid headgroups and the positively charged dimer surface, supporting a synergistic mechanism between REM-CA and the coiled-coil domain to segregate lipid-protein nanodomains. Solid-state NMR and coarse-grained MD simulations further revealed the distinct behavior of REM-CAs when associated to the lipid membrane. We observe differences in membrane association profiles of the REM-CAs and of the charged coiled-coils dependent on the dimer surface charges and dependent on the lipids present in the membrane. Coiled-coil stability and the intensity of membrane association is tuned by the lipid headgroups on the membrane surface. The insights enhance our understanding of the molecular mechanisms underlying the role of remorins in membrane organization in plants, the distinct localizations of remorins in membrane nanodomains and the structural factors contributing to the different remorin functions. This research lays the groundwork for future studies to elucidate the complex behaviors of membrane-associated REMs and their structural tuning during cellular signaling and defense mechanisms
Salles, Audrey. "Influence de l'organisation latérale de la membrane sur l'activation lymphocytaire T". Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22137.
Testo completoLipid rafts are membrane nanodomains enriched in chrolesterol and sphingolipids, which ahave previously been implanted in TCR signaling mechanisms. This contention, however, has beacome highly controversial due to experimental difficulties to study these membrane organizations in vivo. Using non invasive treatments that target specific lipid biosynthesis, we have studied the influence of lateral membrane organization in T lymphocyte activation. By using biophysical approaches, we have demonstrated that in murine CD4+Tcelles, TCR, CD4 and Lck are constitutively and dynamically trapped in lipid rafts, whereas CD45 is excluded. Moreover, this pre-organization impacts binding of TCR to the MHC II-peptide complex and controls the initiation of early TCR signaling. To investigate the role of these structures within individual live cells, we have developed a new high throughput methodology to monitor the calcium mobilization in T cells. We have confirmed the influence of membrane rafts in TCR signaling. Our results have thus demonstrated that pre-organization of TCR signaling protagonists by lipid rafts play a major role in the initiation of T cell antigen recognition
Marquês, Joaquim Trigo. "Supported lipid bilayers with micro/nanodomains in the study of membrane lipid organization and interactions". Doctoral thesis, 2015. http://hdl.handle.net/10451/22728.
Testo completoThe lateral organization of lipid bilayers into domains, such as lipid rafts or gel domains, and how they influence the properties and function of membranes is a current topic in biophysics. In this work, the properties of single and multicomponent lipid bilayers (whether supported on a solid substrate or free in solution as liposomes) exhibiting different phase behavior were studied by a wide range of characterization techniques – atomic force microscopy, ellipsometry, cyclic voltammetry, quartz crystal microbalance, surface plasmon resonance and fluorescence spectroscopy. The phase diagram for the binary mixture 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) / N-octadecanoyl(2S,3S,4R)-2-amino-1,3,4-octadecanetriol (Phytoceramide (PhyCer)) is proposed by combining data from different techniques. The formation of complexes between POPC and PhyCer with properties similar to those found for gel domains in vivo is anticipated. These POPC/PhyCer complexes occur at two distinct stoichiometries, 3:1 and 1:2. The influence of membrane lateral organization was investigated in the context of the interaction of small molecules with lipid bilayers, namely ethanol and epinephrine. The effects of ethanol were studied in supported lipid bilayers (SLB) formed on mica spanning a phase behavior from single fluid to liquid ordered (lo) / liquid disordered (ld) phase coexistence. It was concluded that the lateral organization of lipids into domains, but not the specific lipid composition, plays a determinant role on the effects induced by ethanol. Another purpose of this work was to study the properties of supported lipid bilayers (SLB) formed on gold surfaces. For the first time raft-containing SLB were formed directly on bare gold and the substrate seems to influence the properties of the lipid bilayer since an unexpected proportion of lipid domains was obtained and corrugations were observed in the liquid disordered phase. A lipid-based biosensing interface consisting on a SLB formed on top of a L-cysteine-modified gold was also developed for the detection of membrane-interacting electroactive molecules.The interaction of epinephrine, an electroactive molecule, was evaluated using both liposomes and SLB formed on Lcysteine-modified gold. Despite the weak interaction between epinephrine and liposomes as determined by fluorescence spectroscopy, its redox signal could be clearly detected by cyclic voltammetry when adsorbed on SLB of various compositions. Moreover, voltammetric data allowed to estimate a membrane/water partition coefficient for epinephrine. The results presented show how lateral membrane organization and composition may influence its function and properties.
Saka, Kırlı Sinem. "Studying Protein Organization in Cellular Membranes by High-Resolution Microscopy". Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-0023-98FB-0.
Testo completoKoukalová, Alena. "Studium lipidových membrán v nanorozlišení pomocí fluorescenční detekce jednotlivých molekul". Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-391388.
Testo completo