Letteratura scientifica selezionata sul tema "Membership Inference"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Membership Inference".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Membership Inference"
Pedersen, Joseph, Rafael Muñoz-Gómez, Jiangnan Huang, Haozhe Sun, Wei-Wei Tu e Isabelle Guyon. "LTU Attacker for Membership Inference". Algorithms 15, n. 7 (20 luglio 2022): 254. http://dx.doi.org/10.3390/a15070254.
Testo completoZhao, Yanchao, Jiale Chen, Jiale Zhang, Zilu Yang, Huawei Tu, Hao Han, Kun Zhu e Bing Chen. "User-Level Membership Inference for Federated Learning in Wireless Network Environment". Wireless Communications and Mobile Computing 2021 (19 ottobre 2021): 1–17. http://dx.doi.org/10.1155/2021/5534270.
Testo completoHilprecht, Benjamin, Martin Härterich e Daniel Bernau. "Monte Carlo and Reconstruction Membership Inference Attacks against Generative Models". Proceedings on Privacy Enhancing Technologies 2019, n. 4 (1 ottobre 2019): 232–49. http://dx.doi.org/10.2478/popets-2019-0067.
Testo completoBu, Diyue, Xiaofeng Wang e Haixu Tang. "Haplotype-based membership inference from summary genomic data". Bioinformatics 37, Supplement_1 (1 luglio 2021): i161—i168. http://dx.doi.org/10.1093/bioinformatics/btab305.
Testo completoYang, Ziqi, Lijin Wang, Da Yang, Jie Wan, Ziming Zhao, Ee-Chien Chang, Fan Zhang e Kui Ren. "Purifier: Defending Data Inference Attacks via Transforming Confidence Scores". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 9 (26 giugno 2023): 10871–79. http://dx.doi.org/10.1609/aaai.v37i9.26289.
Testo completoWang, Xiuling, e Wendy Hui Wang. "GCL-Leak: Link Membership Inference Attacks against Graph Contrastive Learning". Proceedings on Privacy Enhancing Technologies 2024, n. 3 (luglio 2024): 165–85. http://dx.doi.org/10.56553/popets-2024-0073.
Testo completoJayaraman, Bargav, Lingxiao Wang, Katherine Knipmeyer, Quanquan Gu e David Evans. "Revisiting Membership Inference Under Realistic Assumptions". Proceedings on Privacy Enhancing Technologies 2021, n. 2 (29 gennaio 2021): 348–68. http://dx.doi.org/10.2478/popets-2021-0031.
Testo completoKulynych, Bogdan, Mohammad Yaghini, Giovanni Cherubin, Michael Veale e Carmela Troncoso. "Disparate Vulnerability to Membership Inference Attacks". Proceedings on Privacy Enhancing Technologies 2022, n. 1 (20 novembre 2021): 460–80. http://dx.doi.org/10.2478/popets-2022-0023.
Testo completoTejash Umedbhai Chaudhari, Krunal Balubhai Patel e Vimal Bhikhubhai Patel. "A study of generalized bell-shaped membership function on Mamdani fuzzy inference system for Students’ Performance Evaluation". World Journal of Advanced Research and Reviews 3, n. 2 (30 agosto 2019): 083–90. http://dx.doi.org/10.30574/wjarr.2019.3.2.0046.
Testo completoXia, Fan, Yuhao Liu, Bo Jin, Zheng Yu, Xingwei Cai, Hao Li, Zhiyong Zha, Dai Hou e Kai Peng. "Leveraging Multiple Adversarial Perturbation Distances for Enhanced Membership Inference Attack in Federated Learning". Symmetry 16, n. 12 (18 dicembre 2024): 1677. https://doi.org/10.3390/sym16121677.
Testo completoTesi sul tema "Membership Inference"
Zens, Gregor. "Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership". Springer, 2019. http://dx.doi.org/10.1007/s11634-019-00353-y.
Testo completoUllah, Noor. "ANFIS BASED MODELS FOR ACCESSING QUALITY OF WIKIPEDIA ARTICLES". Thesis, Högskolan Dalarna, Datateknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4909.
Testo completoZegzulka, Ivo. "Aplikace fuzzy logiky při hodnocení dodavatelů firmy". Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2014. http://www.nusl.cz/ntk/nusl-224446.
Testo completoShah, Raza. "Property inference decision-making and decision switching of undergraduate engineers : implications for ideational diversity & fluency through movements in a Cartesian concept design space". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/278700.
Testo completoSpacca, Jordy Luiz Cerminaro. "Usando o Sistema de Inferência Neuro Fuzzy - ANFIS para o cálculo da cinemática inversa de um manipulador de 5 DOF /". Ilha Solteira, 2019. http://hdl.handle.net/11449/183448.
Testo completoResumo: No estudo dos manipuladores são utilizados os conceitos da cinemática direta e a inversa. No cálculo da cinemática direta tem-se a facilidade da notação de Denavit-Hartenberg, mas o desafio maior é a resolução da cinemática inversa, que se torna mais complexa conforme aumentam os graus de liberdade do manipulador, além de apresentar múltiplas soluções. As variáveis angulares obtidas pelas equações da cinemática inversa são utilizadas pelo controlador, para posicionar o órgão terminal do manipulador em um ponto específico de seu volume de trabalho. Na busca de alternativas para contornar estes problemas, neste trabalho utilizam-se os Modelos Adaptativos de Inferência Neuro-Fuzzy - ANFIS para a resolução da cinemática inversa, por meio de simulações, para obter o posicionamento de um manipulador robótico de 5 graus de liberdade, composto por sete servomotores controlados pela plataforma de desenvolvimento Intel® Galileo Gen 2, usado como caso de estudo. Nas simulações usamse ANFIS com uma arquitetura com três e quatro funções de pertinência de entrada, do tipo gaussiana. O desempenho da arquitetura da ANFIS implementada foi comparado com uma Rede Perceptron Multicamadas, demonstrando com os resultados favoráveis a ANFIS, a sua capacidade de aprender e resolver com baixo erro quadrático médio e com precisão, a cinemática inversa para o manipulador em estudo. Verifica-se também, que a performance das ANFIS melhora, quanto à precisão dos resultados, demonstrado pelo desvio médio d... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the study of manipulator’s, the concepts of direct and inverse kinematics are used. In the computation of forward kinematics, it has of the ease of Denavit-Hartenberg notation, but the biggest challenge is the resolution of the inverse kinematics, which becomes more complex as the manipulator's degrees of freedom increase, besides presenting multiple solutions. The angular variables obtained by the inverse kinematics equations are used by the controller to position the terminal organ of the manipulator at a specific point in its work volume. In the search for alternatives to overcome these problems, in this work, the Adaptive Neuro-Fuzzy Inference Models (ANFIS) are used to solve the inverse kinematics, by means of simulations, to obtain the positioning of a robot manipulator of 5 degrees of freedom, consisting of seven servomotors controlled by the Intel® Galileo Gen 2 development platform, used as a case's study . In the simulations ANFIS's architecture are used three and four Gaussian membership functions of input. The performance of the implemented ANFIS architecture was compared to a Multi-layered Perceptron Network, demonstrating with the favorable results the ANFIS, its ability to learn and solve with low mean square error and with precision, the inverse kinematics for the manipulator under study. It is also verified that the performance of the ANFIS improves, as regards the accuracy of the results in the training process, , demonstrated by the mean deviation of the... (Complete abstract click electronic access below)
Mestre
Kim, Hyowon. "Improving Inferences about Preferences in Choice Modeling". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587524882296023.
Testo completoAzize, Achraf. "Privacy-Utility Trade-offs in Sequential Decision-Making under Uncertainty". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB029.
Testo completoThe topics addressed in this thesis aim to characterise the privacy-utility trade-offs in sequential decision-making under uncertainty. The main privacy framework adopted is Differential Privacy (DP), and the main setting for studying utility is the stochastic Multi-Armed Bandit (MAB) problem. First, we propose different definitions that extend DP to the setting of multi-armed bandits. Then, we quantify the hardness of private bandits by proving lower bounds on the performance of bandit algorithms verifying the DP constraint. These bounds suggest the existence of two hardness regimes depending on the privacy budget and the reward distributions. We further propose a generic blueprint to design near-optimal DP extensions of bandit algorithms. We instantiate the blueprint to design DP versions of different bandit algorithms under different settings: finite-armed, linear and contextual bandits under regret as a utility measure, and finite-armed bandits under sample complexity of identifying the optimal arm as a utility measure. The theoretical and experimental analysis of the proposed algorithms furthermore validates the existence of two hardness regimes depending on the privacy budget.In the second part of this thesis, we shift the view from privacy defences to attacks. Specifically, we study fixed-target Membership Inference (MI) attacks, where an adversary aims to infer whether a fixed target point was included or not in the input dataset of an algorithm. We define the target-dependent leakage of a datapoint as the advantage of the optimal adversary trying to infer the membership of that datapoint. Then, we quantify both the target-dependent leakage and the trade-off functions for the empirical mean and variants of interest in terms of the Mahalanobis distance between the target point and the data-generating distribution. Our asymptotic analysis builds on a novel proof technique that combines an Edgeworth expansion of the Likelihood Ratio (LR) test and a Lindeberg-Feller central limit theorem. Our analysis shows that the LR test for the empirical mean is a scalar product attack but corrected for the geometry of the data using the inverse of the covariance matrix. Finally, as by-products of our analysis, we propose a new covariance score and a new canary selection strategy for auditing gradient descent algorithms in the white-box federated learning setting
Lee, Sheau Chuen, e 李曉春. "The Design of a Fast Inference and Symmetric Membership Function Based Fuzzy Chip". Thesis, 1996. http://ndltd.ncl.edu.tw/handle/24997616625348102706.
Testo completoAlharbi, Basma Mohammed. "Latent Feature Models for Uncovering Human Mobility Patterns from Anonymized User Location Traces with Metadata". Diss., 2017. http://hdl.handle.net/10754/623122.
Testo completoFernandes, Flávio Duarte Pacheco. "LHView: Location Aware Hybrid Partial View". Master's thesis, 2017. http://hdl.handle.net/10362/66268.
Testo completoCapitoli di libri sul tema "Membership Inference"
Xu, Tianxiang, Chang Liu, Kun Zhang e Jianlin Zhang. "Membership Inference Attacks Against Medical Databases". In Communications in Computer and Information Science, 15–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8138-0_2.
Testo completoMonreale, Anna, Francesca Naretto e Simone Rizzo. "Agnostic Label-Only Membership Inference Attack". In Network and System Security, 249–64. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39828-5_14.
Testo completoHa, Trung, Trang Vo, Tran Khanh Dang e Nguyen Thi Huyen Trang. "Differential Privacy Under Membership Inference Attacks". In Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, 255–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8296-7_18.
Testo completoBarezzani, Sergio. "Membership Inference Attacks in Machine Learning". In Encyclopedia of Cryptography, Security and Privacy, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-642-27739-9_1825-1.
Testo completoGoto, Yumeki, Nami Ashizawa, Toshiki Shibahara e Naoto Yanai. "Do Backdoors Assist Membership Inference Attacks?" In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 251–65. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64954-7_13.
Testo completoBarezzani, Sergio. "Membership Inference Attacks in Machine Learning". In Encyclopedia of Cryptography, Security and Privacy, 1520–23. Cham: Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-030-71522-9_1825.
Testo completoZari, Oualid, Javier Parra-Arnau, Ayşe Ünsal, Thorsten Strufe e Melek Önen. "Membership Inference Attack Against Principal Component Analysis". In Privacy in Statistical Databases, 269–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13945-1_19.
Testo completoSenavirathne, Navoda, e Vicenç Torra. "Dissecting Membership Inference Risk in Machine Learning". In Cyberspace Safety and Security, 36–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94029-4_3.
Testo completoChen, Shi, e Yubin Zhong. "Two-Stage High Precision Membership Inference Attack". In Machine Learning for Cyber Security, 521–35. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20099-1_44.
Testo completoYan, Ran, Ruiying Du, Kun He e Jing Chen. "Efficient Adversarial Training with Membership Inference Resistance". In Pattern Recognition and Computer Vision, 474–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8429-9_38.
Testo completoAtti di convegni sul tema "Membership Inference"
Lou, Jiadong, e Xu Yuan. "Membership Inference via Self-Comparison". In 2024 IEEE Conference on Communications and Network Security (CNS), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/cns62487.2024.10735627.
Testo completoYichuan, Shi, Olivera Kotevska, Viktor Reshniak e Amir Sadovnik. "Assessing Membership Inference Attacks under Distribution Shifts". In 2024 IEEE International Conference on Big Data (BigData), 4127–31. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825580.
Testo completoGalli, Filippo, Luca Melis e Tommaso Cucinotta. "Noisy Neighbors: Efficient membership inference attacks against LLMs". In Proceedings of the Fifth Workshop on Privacy in Natural Language Processing, 1–6. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.privatenlp-1.1.
Testo completoLejbølle Jelstrup, Malthe Andreas, e Siavash Arjomand Bigdeli. "Deepmarking: Leveraging Adversarial Noise for Membership Inference Attacks". In 2024 IEEE International Conference on Computational Photography (ICCP), 1–10. IEEE, 2024. http://dx.doi.org/10.1109/iccp61108.2024.10644615.
Testo completoDeAlcala, Daniel, Gonzalo Mancera, Aythami Morales, Julian Fierrez, Ruben Tolosana e Javier Ortega-Garcia. "A Comprehensive Analysis of Factors Impacting Membership Inference". In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3585–93. IEEE, 2024. http://dx.doi.org/10.1109/cvprw63382.2024.00362.
Testo completoZhang, Rongting, Martin Andres Bertran e Aaron Roth. "Order of Magnitude Speedups for LLM Membership Inference". In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 4431–43. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.253.
Testo completoXie, Roy, Junlin Wang, Ruomin Huang, Minxing Zhang, Rong Ge, Jian Pei, Neil Zhenqiang Gong e Bhuwan Dhingra. "ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods". In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 8671–89. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-main.493.
Testo completoShi, Haonan, Tu Ouyang e An Wang. "Learning-Based Difficulty Calibration for Enhanced Membership Inference Attacks". In 2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P), 62–77. IEEE, 2024. http://dx.doi.org/10.1109/eurosp60621.2024.00012.
Testo completoShah, Akash, Sapna Varshney e Monica Mehrotra. "DepInferAttack: Framework for Membership Inference Attack in Depression Dataset". In 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), 1326–32. IEEE, 2024. https://doi.org/10.1109/ictacs62700.2024.10840770.
Testo completoDixit, Neil. "Quantifying Classification Metrics in Black Box Membership Inference Attacks". In 2025 IEEE 4th International Conference on AI in Cybersecurity (ICAIC), 1–6. IEEE, 2025. https://doi.org/10.1109/icaic63015.2025.10848684.
Testo completoRapporti di organizzazioni sul tema "Membership Inference"
Tsidylo, Ivan M., Serhiy O. Semerikov, Tetiana I. Gargula, Hanna V. Solonetska, Yaroslav P. Zamora e Andrey V. Pikilnyak. Simulation of intellectual system for evaluation of multilevel test tasks on the basis of fuzzy logic. CEUR Workshop Proceedings, giugno 2021. http://dx.doi.org/10.31812/123456789/4370.
Testo completoPaule, Bernard, Flourentzos Flourentzou, Tristan de KERCHOVE d’EXAERDE, Julien BOUTILLIER e Nicolo Ferrari. PRELUDE Roadmap for Building Renovation: set of rules for renovation actions to optimize building energy performance. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541614638.
Testo completo